Signals and dynamic systems - opis przedmiotu

	•
Informacje ogólne	
Nazwa przedmiotu	Signals and dynamic systems
Kod przedmiotu	06.0-WE-AutP-SygDynamSyst-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacje o przedmiocie	
Semestr	3
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• prof. dr hab. inż. Krzysztof Patan

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Egzamin
Laboratorium	30	2	•	-	Zaliczenie na
					ocenę

Cel przedmiotu

- Skills and competences in signal analysis, convolution of signals, Fourier transform, Laplace transform and Z transform.
- Skills in system analysis and mathematical representation of systems.
- Using stability criteria.

Wymagania wstępne

Mathematical analysis, Linear algebra, modeling and simulation.

Zakres tematyczny

- Signals. Signal representation. Signal types: step function, binary pseudo-random sequence, auto-regressive sequence, moving average, sum of sinusoids. Persistently exciting signals. Practical aspects of selecting input signal.
- 2. Fourier transform. Fourier series and Fourier transform. Spectroanalysis. Fast Fourier Transform (FFT). Fourier analysis of systems.
- 3. *Laplace transform.* Linear differential equations. Laplace transform and its properties. Solving linear differential equations using Laplace transform. Inverse Laplace transform. Transfer function. Basic operations on transfer functions.
- 4. *Z transform*. Linear difference equations. Properties of the Z transform. Z transform of the step function and exponential functions. Application of the Z transform to solving linear difference equations. Determining the original of a given Z transform.
- 5. System representation Dynamic system. System input, system output, system state, control signal. Representation of discrete-time and continuous-time dynamic systems. Differential equations, difference equations. Transfer functions. State-space representations.
- 6. Fundamental properties of systems. Causality. Stationarity. Linearity. Stability of dynamic systems. Definitions of stability. Controllability and observability of linear dynamic systems, both continuous and discrete.
- 7. Stability of dynamic systems. Linear continuous systems stability criteria: Hurwitz criterion, Routh criterion, Nyquist criterion. The first and second Lyapunov methods. Discrete systems stability criteria. Transformation of the left half complex plane into unit circle.
- 8. Spectral transfer function. Frequency characteristics: Bode diagram, attenuation diagram, phase diagram. Transient response: step response and impulse response. Relationship between transient responses and spectral transfer function.
- 9. Characteristic of selected dynamic elements. Proportional element, inertial element of the first and second order, integrating element, differential element, oscillating element and delay element

Metody kształcenia

lecture: classical lecture

labs: laboratory exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can himself analyze characteristics of the dynamic systems.		 egzamin - ustny, opisowy, testowy i inne 	 Wykład
Is able to analyze signals in frequency domain.		 egzamin - ustny, opisowy, testowy i inne 	 Wykład
Is able to characterize and classify dynamic systems		 egzamin - ustny, opisowy, testowy i inne 	 Wykład
Is familiar with Laplace transform, Z transform and Fourier transform. Is able to solve linear differential equations and linear difference equations.		sprawdzianwykonanie sprawozdań laboratoryjnych	 Laboratorium
Student has competences in the field of stability of linear systems both continuous- and discrete-time.		 sprawdzian wykonanie sprawozdań laboratoryjnych bieżąca kontrola na zajęciach 	 Laboratorium

Warunki zaliczenia

Lecture - the passing condition is to obtain a positive mark from the final test.

Laboratory – the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester. as well as give back all reports from laboratory exercises.

Final grade = lecture: 50% + laboratory: 50%

Literatura podstawowa

- 1. Won Y. Yang et al., Signals and systems with MATLAB, Springer, Berlin, 2009.
- 2. Steven T. Karris, Signals and systems with Matlab computing and Simulink modeling, Orchard Publications, 2007.

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 11-04-2022 09:05)

Wygenerowano automatycznie z systemu SylabUZ