Signals and dynamic systems - course description

<i>-</i>	, ,	
General informa	ıtion	
Course name		Signals and dynamic systems
Course ID		06.0-WE-AutP-SygDynamSyst-Er
Faculty		Faculty of Computer Science, Electrical Engineering and Automatics
Field of study		Automatic Control and Robotics
Education profile		academic
Level of studies		First-cycle Erasmus programme
Beginning semester		winter term 2022/2023

Course information	
Semester	3
ECTS credits to win	5
Course type	obligatory
Teaching language	english
Author of syllabus	prof. dr hab. inż. Krzysztof Patan

Classes forms					
The class form	Hours per semester (full-time)	Hours per week (full-time) Hours per semester (part-time)	Hours per week (part-time) Form of assignment
Lecture	30	2	•	-	Exam
Laboratory	30	2	•	-	Credit with grade

Aim of the course

- Skills and competences in signal analysis, convolution of signals, Fourier transform, Laplace transform and Z transform.
- Skills in system analysis and mathematical representation of systems.
- Using stability criteria.

Prerequisites

Mathematical analysis, Linear algebra, modeling and simulation.

Scope

- 1. Signals. Signal representation. Signal types: step function, binary pseudo-random sequence, auto-regressive sequence, moving average, sum of sinusoids. Persistently exciting signals. Practical aspects of selecting input signal.
- 2. Fourier transform. Fourier series and Fourier transform. Spectroanalysis. Fast Fourier Transform (FFT). Fourier analysis of systems.
- 3. Laplace transform. Linear differential equations. Laplace transform and its properties. Solving linear differential equations using Laplace transform. Inverse Laplace transform. Transfer function.. Basic operations on transfer functions.
- 4. *Z transform*. Linear difference equations. Properties of the Z transform. Z transform of the step function and exponential functions. Application of the Z transform to solving linear difference equations. Determining the original of a given Z transform.
- 5. System representation Dynamic system. System input, system output, system state, control signal. Representation of discrete-time and continuous-time dynamic systems. Differential equations, difference equations. Transfer functions. State-space representations.
- 6. Fundamental properties of systems. Causality. Stationarity. Linearity. Stability of dynamic systems. Definitions of stability. Controllability and observability of linear dynamic systems, both continuous and discrete.
- 7. Stability of dynamic systems. Linear continuous systems stability criteria: Hurwitz criterion, Routh criterion, Nyquist criterion. The first and second Lyapunov methods. Discrete systems stability criteria. Transformation of the left half complex plane into unit circle.
- 8. Spectral transfer function. Frequency characteristics: Bode diagram, attenuation diagram, phase diagram. Transient response: step response and impulse response. Relationship between transient responses and spectral transfer function.
- 9. Characteristic of selected dynamic elements. Proportional element, inertial element of the first and second order, integrating element, differential element, oscillating element and delay element

Teaching methods

lecture: classical lecture

labs: laboratory exercises

Learning outcomes and methods of theirs verification

Outcomesymbols Methods of verification	The class form
• a quiz	 Laboratory
 carrying out laboratory reports 	
 an exam - oral, descriptive, test and other 	• Lecture
 an exam - oral, descriptive, test and other 	• Lecture
 an exam - oral, descriptive, test and other 	• Lecture
a quizcarrying out laboratory reports	 Laboratory
	 a quiz carrying out laboratory reports an exam - oral, descriptive, test and other an exam - oral, descriptive, test and other an exam - oral, descriptive, test and other a quiz

Assignment conditions

Lecture - the passing condition is to obtain a positive mark from the final test.

Laboratory – the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester. as well as give back all reports from laboratory exercises.

Final grade = lecture: 50% + laboratory: 50%

Recommended reading

- 1. Won Y. Yang et al., Signals and systems with MATLAB, Springer, Berlin, 2009.
- 2. Steven T. Karris, Signals and systems with Matlab computing and Simulink modeling, Orchard Publications, 2007.

Further reading

Notes

Modified by dr hab. inż. Wojciech Paszke, prof. UZ (last modification: 11-04-2022 09:05)

Generated automatically from SylabUZ computer system