Discrete process control - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Discrete process control
Kod przedmiotu	06.0-WE-AutP-DPC-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacje o przedmiocie	
Semestr	3
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	dr inż. Grzegorz Bazydło

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Egzamin
Laboratorium	30	2	•	-	Zaliczenie na
					ocenę

Cel przedmiotu

- Familiarize students with discrete control issues in which the control algorithm is implemented as a sequential model (FSM), concurrent model (Petri net) or hierarchical model (UML state machine).
- Shaping basic skills of modelling control systems and their formal verification.

Wymagania wstępne

- Fundamentals of discrete systems
- Computer architecture

Zakres tematyczny

- Formal specification of discrete process at the behavioral level: flowchart, hierarchical state machine (statechart, UML state machine), hierarchical Petri net.
- · Modular behavioral specification of logic control programs using hierarchical Petri nets, The role of formal specification in PLC programming.
- UML as a reactive system specification tool. UML state machine diagram, activity diagram, use case diagram. UML role in documenting and synthesis of software for embedded digital microsystems.
- Formal verification with the use of Petri net theory.
- Logic controller architecture: microcontroller as a logic controller, digital System-on-Chip (SoC) microsystems. Industrial Programmable Logic Controller (PLC). Embedded, Reconfigurable Logic Controller (RLC).
- Software or structural realization of logic controllers: RLC programming based on behavioral specifications. Structural synthesis of embedded controller using formal methods based on behavioral specification. The role of hardware description languages (e.g., VHDL, Verilog) in system synthesis.
- Specification and modeling of binary control algorithms on the system-level using UML, Petri nets and professional CAD systems for digital microsystem design.

Metody kształcenia

Lecture: conventional lecture.
Laboratory: laboratory exercises.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Student has the ability to create abstract models of systems using UML and Petri	 egzamin - ustny, opisowy, 	 Wykład
nets, in which the control is a central element.	testowy i inne	
Student has the ability to describe a control program using various modelling methods and languages.	• bieżąca kontrola na zajęcia	• Laboratorium
Student has the ability to design logic controllers as well as digital circuits.	• bieżąca kontrola na zajęcia	• Laboratorium
Student has the knowledge about the classical definition of discrete control, both	• egzamin - ustny, opisowy,	Wykład
sequential, concurrent and hierarchical (FSM, Petri net, state machine).	testowy i inne	

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Student has the knowledge about the formal verification of the controllers.

 egzamin - ustny, opisowy, testowy i inne Wykład

Warunki zaliczenia

Lecture: the main condition to get a pass are sufficient marks in written exam.

Laboratory: a condition of pass is to obtain positive grades from all laboratory exercises that are expected to be performed within the laboratory program.

Composition of the final grade: lecture: 50% + laboratory: 50%

Literatura podstawowa

- 1. Rumbaugh J., Jacobson I., Booch G., The Unified Modeling Language Reference Manual, Second Edition, Addison-Wesley, USA, 1999.
- 2. Adamski M., Karatkevich A., Węgrzyn M., Design of Embedded Control Systems, Springer (USA), New York, 2005.
- 3. Żurawski R.(Ed.), Embedded Systems Handbook, CRC, Boca Raton, 2006.
- 4. Harel D., Feldman Y.: Algorithmics, The Spirit of Computing (3rd Edition), Addison-Wesley, USA, 2004.

Literatura uzupełniająca

- 1. Reisig W., Petri Nets: An Introduction, Berlin, Germany: Springer-Verlag, 2012.
- 2. Yakovlev, Gomes L., L. Lavagno (Ed.), Hardware Design and Petri Nets, Kluwers Academic Publishers, Boston, 2000.
- 3. Booch G., Rumbaugh J., Jacobson I., The Unified Modeling Language User Guide, Second Edition, Addison-Wesley, USA, 2005.
- 4. Bazydło G., Graphic specification of programs for reconfigurable logic controllers using Unified Modeling Language, University of Zielona Góra Press, Lecture Notes in Control and Computer Science, Zielona Góra, 2012.
- 5. Wiśniewski R., Prototyping of Concurrent Control Systems Implemented in FPGA Devices, Cham, Switzerland:Springer, 2017.

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 11-04-2022 09:05)

Wygenerowano automatycznie z systemu SylabUZ