Industrial automation equipment - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Industrial automation equipment
Kod przedmiotu	06.0-WE-AutP-IAE-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacje o przedmiocieSemestr5Liczba punktów ECTS do zdobycia4Typ przedmiotuobowiązkowyJęzyk nauczaniaangielskiSylabus opracował• dr hab. inż. Jacek Kaniewski

Formy zajęć	ormy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia	
Laboratorium	30	2	-		Zaliczenie na ocenę	
Wykład	15	1	-		Zaliczenie na ocenę	

Cel przedmiotu

Skills and competencies needed to choice industrial automation elements and equipment. Skills and competencies needed to design and model basic pneumatic and electropneumatic control systems.

Wymagania wstępne

Physics for engineers, Fundamentals of electrical engineering, Fundamentals of electronics,

Zakres tematyczny

Introduction. Control tasks and functional elements of control systems. Types of industrial automation components and equipment and their specifications. Specifications of electronic and electrical automation components and equipment. Relays, reed relays, bimetallic overload relays, controllers. Sensors and transducers.

Controllers. Controller types, properties and specifications. Self-actuated controllers. PID controllers, on-off controllers. Digital controllers. Control specification and performance indices. PID controller tuning methods.

Electrical actuators. Actuator types and their specifications. Advantages and disadvantages of electrical actuation. Electrical servo motors and actuators. Basic principles of AC and DC servo motors and stepper motors.

Pneumatic automation equipment. Pneumatic components, their types and classification. Pneumatic symbols. Air preparation units, pressure regulators, filters, and lubricators.

Pneumatic actuators. Types, specifications, and applications. Pneumatic motors: types, specifications, and applications.

Pneumatic valves. Air flow and air pressure control valves: directional control valves, flow control valves, shutoff valves, throttle valves, non-return valves, pressure control valves, air distribution valves. Blocks of valves and valve islands.

Pneumatic system designing. Design calculations for pneumatic systems. Designing, modeling and simulation of pneumatic and electropneumatic circuits using FluidSim 4 Pneumatics software.

Metody kształcenia

Lecture: problem lecture, conventional lecture

Laboratory: laboratory exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć		
Has basic knowledge of pneumatic, hydraulic and electromechanical	• test	 Wykład 		
actuators of automation systems				

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can classify industrial automation elements and equipments. Knows the	• test	 Wykład
functions of the actuators in automation systems.		
Is able to select, configure and tune industrial PID controllers	• test	• Wykład
	 wykonanie sprawozdań 	 Laboratorium
	laboratoryjnych	
Knows methods for the development of electropneumatic control systems	s • test	 Wykład
using 3/2 and 5/2 way directional valves.	 wykonanie sprawozdań 	 Laboratorium
	laboratoryjnych	
Knows methods for the development of pneumatic control systems using	• test	 Wykład
3/2 and 5/2 way directional valves.	 wykonanie sprawozdań 	 Laboratorium
	laboratoryjnych	
Knows symbols and standards used in pneumatics and electropneumatics	s • test	 Wykład

Warunki zaliczenia

Lecture - getting a positive grade from the test

Laboratory - get positive grades from all lab exercises.

Literatura podstawowa

- 1. P. Croser, F. Ebel, Pneumatics. Basic Level. Festo Didactic GmbH & Co., Denkendorf, 2000
- 2. A.K. Gupta, Industrial Automation and Robotics: An Introduction. Mercury Learning & Information, 2013
- 3. G. Prede, D. Scholz, Electropneumatics. Basic Level. Festo Didactic GmbH & Co., Denkendorf, 2002
- 4. J. Stenerson, Industrial Automation and Process Control. Prentice Hall. 2002

Literatura uzupełniająca

- 1. S. Medida, Pocket Guide on Industrial Automation. For Engineers and Technicians. IDC Technologies, 2007 (www.PAControl.com)
- 2. FluidSim 4 Pneumatics. Users Guide. Festo Didactic GmbH & Co., Denkendorf, 2007

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 11-04-2022 09:05)

Wygenerowano automatycznie z systemu SylabUZ