Precision drives and industrial robots - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Precision drives and industrial robots
Kod przedmiotu	11.9-WE-AutP-PDIR-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacje o przedmiocie

Semestr	6		
Liczba punktów ECTS do zdobycia	3		
Typ przedmiotu	obieralny		
Język nauczania	angielski		
Sylabus opracował	 prof. dr hab. inż. Robert Smoleński 		
	 dr hab. inż. Jacek Kaniewski 		

Formy zajęć

Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Zaliczenie na
					ocenę
Laboratorium	30	2	-	-	Zaliczenie na
					ocenę

Cel przedmiotu

- formation of basic skills in the selection of open and closed systems for speed, torque and position control,
- to familiarize students with the servo motors used in robots and robotic systems.

Wymagania wstępne

Engineering physics, Electrical engineering principles, Electronics principles, Control engineering, Control of electrical drives

Zakres tematyczny

Servomotors used in robots and robot systems. DC motors (conventional and disc), synchronous motors permanent magnet and reluctance, step motors and asynchronous. Power electronic converter servo drives.

Control methods of electric drives. Scalar control. Field oriented control. Direct torque control. Sensorless control.

Open and closed loop control of speed, torque and position. Realization of four-quadrant direct and alternating current drives. Follow-up and position servo drives, precise drives. Robot drives. Sensor systems of robots.

Metody kształcenia

Lecture, laboratory exercises.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can choose appropriate drive systems to the specific requirements of	 bieżąca kontrola na zajęciach 	 Laboratorium
working machines	 wykonanie sprawozdań laboratoryjr 	iych
Can choose control parameters of converter drives	 bieżąca kontrola na zajęciach 	Laboratorium
	 wykonanie sprawozdań laboratoryjr 	iych
Is aware of the importance of electric drives for technology	• kolokwium	 Wykład
development and drives influence onto power system		
Knows operation principles of electric servo-motors and can	 bieżąca kontrola na zajęciach 	 Wykład
characterize their static and dynamic properties	• kolokwium	 Laboratorium
	 wykonanie sprawozdań laboratoryjr 	lych

Lecture - the main condition to get a pass are sufficient marks in written or oral tests conducted at least once per semester.

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Calculation of the final grade: lecture 60% + laboratory 40%

Literatura podstawowa

- 1. Kaźmierkowski M. P., Tunia H.: Automatic Control of Converter-Fed Drives, Warsaw Amsterdam New York Tokyo: PWN-ELSEVIER SCIENCE PUBLISHERS, 1994.
- 2. Kaźmierkowski M. P., Blaabjerg F., Krishnan R.: Control in Power Electronics, Selected Problems, Elsevier 2002.
- 3. Boldea I., Nasar S.A, Electric Drives, CRC Press, 1999.
- 4. Kaźmierkowski M. P. and Orłowska-Kowalska T.: Neural Network estimation and neuro-fuzzy control in converter-fed induction motor drives, Chapter in Soft Computing in Industrial Electronics, Springer-Verlag, Heidelberg, 2002.
- 5. Leonhard W.: Control of Electrical Drives, Springer, Berlin, New York, 2001.
- 6. Miller T.J.E.: Brushless Permanent-Magnet and Reluctance Motor Drives, Oxford University Press, Oxford, England, 1989.
- 7. Ryoji O.: Intelligent sensor technology, John Willey & Sons, 1992.
- 8. Samson C., Le Borgne M., Espinau B.: Robot control. Oxford University Press, 1991.
- 9. Canudas C., Siciliano B., Bastin G.: Theory of robot control. Springer Verlag, 1996.

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 11-04-2022 09:05)

Wygenerowano automatycznie z systemu SylabUZ