Intelligent Control and Measurement Systems - course description

General information	
Course name	Intelligent Control and Measurement Systems
Course ID	11.9AutP-ICaMS-Er
Faculty	Faculty of Computer Science, Electrical Engineering and Automatics
Field of study	Automatic Control and Robotics
Education profile	academic
Level of studies	First-cycle Erasmus programme
Beginning semester	winter term 2022/2023

Course information	
Semester	6
ECTS credits to win	5
Course type	optional
Teaching language	english
Author of syllabus	• dr inż. Emil Michta, prof. UZ
	• dr inż. Adam Markowski

Classes forms					
The class form	Hours per semester (full-time)	Hours per week (full-time)) Hours per semester (part-time)	Hours per week (part-time) Form of assignment
Laboratory	30	2	-	-	Credit with grade
Lecture	30	2	-	-	Exam

Aim of the course

- introduce students to the construction, operation and basics of designing intelligent measurement and control systems,
- introduce students to selected communication standards used in intelligent measurement and control systems,
- shaping among students basic skills in the field of configuration, programming and testing of measurement and control systems.

Prerequisites

SCADA Systems, Embedded Systems, Industrial Automation Devices, Control Systems

Scone

Basics of intelligent measurement and control systems. Evolution of measurement and control systems. ISA communication reference model. Architectures of network measurement and control systems. Smart nodes. Dedicated operating systems of measurement and control systems nodes. Characteristic features of intelligent measurement and control systems. Communication protocols: PROFIBUS, CAN, LonWorks and INTERBUS-S. Industrial Ethernet. Integration, configuration and management of measurement and control systems. Internet technologies in measurement and control systems. Dedicated web servers. Wireless measurement and control systems. Communication protocols for wireless measurement and control systems. Wireless sensor networks. IoT in measurement and control systems. Selected application areas. Assessment of communication parameters. Basics of design. Analysis of communication efficiency and time parameters of the designed measurement and control system. Criteria for selecting a communication protocol. Examples of measurement and control systems with distributed intelligence.

Teaching methods

lecture: discussion, consultation, conventional lecture

laboratory: discussion, consultations, group work, project method

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols Methods of verification	The class form
Has basic knowledge of the construction and operation of intelligent	 activity during the classes 	 Lecture
measurement and control systems	 an exam - oral, descriptive, test and ot 	her
Can build, run and test a measurement and control system with a	activity during the classes	 Laboratory
selected communication protocol	 an observation and evaluation of the s 	student's
	practical skills	
knows and understands the basics of the methodology of designing	 activity during the classes 	• Lecture
ntelligent measurement and control systems	 an exam - oral, descriptive, test and ot 	her
Is aware of the costs and benefits resulting from the use of intelligen	e an exam - oral, descriptive, test and ot	her • Lecture
measurement and control systems		

Assignment conditions

Lecture - the condition for obtaining credit is to obtain a positive grade from the written exam.

Laboratory - the condition for obtaining credit is positive grades from all laboratory exercises planned for implementation under the laboratory program

Final grade components = lecture: 50% + laboratory: 50%

Recommended reading

- 1. Hughes T. A.: Measurement and Control Basics. Instrument Society of America, 2015.
- 2. Guruprasad R.K., Santhosh K.V.: Smart Sensors Measurements and Instrumentation, Springer, 2021.
- 3. Mukhopadhyay S., Ch.: Intelligent Sensing, Instrumentation and Measurements, Springer, 2013

Further reading

Notes

Modified by dr inż. Emil Michta, prof. UZ (last modification: 14-04-2022 21:50)

Generated automatically from SylabUZ computer system