Wireless sensor networks - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Wireless sensor networks
Kod przedmiotu	06.2-WE-ELEKTP-WSN-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Elektrotechnika
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus pierwszego stopnia
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacje o przedmiocie

Semestr	6
Liczba punktów ECTS do zdobycia	4
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	dr inż. Emil Michta, prof. UZ
•	dr inż. Piotr Powroźnik

Formy zajęć

Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Zaliczenie na ocenę
Laboratorium	30	2	-	-	Zaliczenie na ocenę

Cel przedmiotu

Skills and competence within: design and configuration ZigBee wireless sensor networks. Writing of application programs in C or Java for ZigBee nodes. Creating of application profiles for ZigBee. Use of security solutions for data transmission protection in ZigBee networks.

Wymagania wstępne

Microprocessor systems, Intelligent measurement transducers

Zakres tematyczny

Introduction to sensor networks. Evolution of WPAN wireless networks. Wireless networks IEEE 802.15.x. Processors for wireless network nodes. Supply issues of wireless sensor networks. Application areas of sensor networks.

Sensor networks. Sensor networks topology. Physical layer and data layer of wireless sensor networks - IEEE 802.15.4. Network layer and application layer - ZigBee standard.

ZigBee. Architecture of ZigBee protocol. ZigBee network functioning. Kinds and functioning of ZigBee nodes. Central managing and routing. Domens, clusters and profiles in ZigBee networks. Configuration of ZigBee networks. Implementation of security solution on MAC layer, network layer and application layer. Addressing and binding of variables. Application areas and application profiles.

Bluetooth. Architecture of Bluetooth protocol. Functioning of Bluetooth networks. Implementation of measurement - control functions.

Nodes of WPAN. Types and functions of ZigBee and Bluetooth network nodes. Design of ZigBee and Bluetooth network nodes.

Design and analysis of communication features in sensor networks. Choose of designed network topology. Coordinator and network configuration. Calculation of communication parameters for designed network. ZigBee sensor network simulation. Examples of applications.

Metody kształcenia

Lecture: conventional lecture, discussion, consultation.

Laboratory: laboratory exercises, group work, discussion, consultation.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can build, start and test a simple wireless sensor network	 obserwacje i ocena umiejętności praktycznych studenta 	• Laboratorium
Can use programming environments and software tools used to create the software for sensor network nodes	 obserwacje i ocena umiejętności praktycznych studenta 	Laboratorium

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Has the basic knowledge in the area of the construction, operation	• test	 Wykład
and architecture of wireless sensor networks		
Is aware of the benefits resulting from the use of wireless solutions	• test	• Wykład
in measurement- control systems		
Knows and understands the basics of wireless sensor network	• test	• Wykład
design and configuration methodology		

Warunki zaliczenia

Lecture – the pass condition is to get good ratings from written tests carried out twice a semester. Laboratory – the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.

Calculation of the final Grade: lecture 50% + laboratory 50%

Literatura podstawowa

- 1. Mahmoud H., Fahmy A.: Wireless Sensor Networks: Concepts, Applications, Experimentation and Analysis, Springer, 2016
- 2. Ammari H. M.: The Art of Wireless Sensor Networks: Volume 1: Fundamentals, Springer Science & Business Media, 2013
- 3. Miller A.B., Bisdikian Ch.: Bluetooth. Helion. Gliwice, 2004.
- 4. Nawrocki W.: Komputerowe systemy pomiarowe. WKŁ, Warszawa, 2004.
- 5. Raghavendra C.S., Sivalingam K.M., Znati T.: Wireless Sensor Networks. Kluver Academic Publisher, 2005.
- 6. Zieliński B.: Bezprzewodowe sieci komputerowe. Helion, Gliwice, 2000.
- 7. Zhao F., Gibas L.: Wireless Sensor Networks. An Information Processing Approach. Elsevier, 2004

Literatura uzupełniająca

- 1. ZigBee Alliance. ZigBee PRO 2015 (R21) Specification
- 2. Tanenbaum A. S., Wetherall D. J.: Sieci komputerowe. Wydanie V, Helion, 2012
- 3. Faludi R.: Building Wireless Sensor Networks: with ZigBee, XBee, Arduino, and Processing, O'Reilly Media, 2010

Uwagi

Zmodyfikowane przez dr hab. inż. Paweł Szcześniak, prof. UZ (ostatnia modyfikacja: 06-04-2022 22:42)

Wygenerowano automatycznie z systemu SylabUZ