Sensors and industrial measurements - opis przedmiotu

Informacje ogólneNazwa przedmiotuSensors and industrial measurementsKod przedmiotu06.0-WE-AutD-SensIndMeasur.-ErWydziałWydział Nauk Inżynieryjno-TechnicznychKierunekAutomatyka i robotyka / Komputerowe Systemy AutomatykiProfilogólnoakademickiRodzaj studiówProgram Erasmus drugiego stopniaSemestr rozpoczęciasemestr zimowy 2022/2023

Informacje o przedmiocie

Semestr	1
Liczba punktów ECTS do zdobycia	4
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• prof. dr hab. inż. Ryszard Rybski

Formy zajęć							
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia		
Wykład	15	1		-	Zaliczenie na ocenę		
Laboratorium	30	2	-	-	Zaliczenie na ocenę		

Cel przedmiotu

- familiarize students with the parameters of sensors and methods of description of their static and dynamic properties
- familiarize students with the basic functional blocks of measurement signal processing paths
- familiarize students with the structure, principle of operation and properties of measuring transducers of non-electric quantities and areas of their application
- · making students aware of the requirements for sensors and transducers

Wymagania wstępne

Fundamentals of electrical engineering, Fundamentals of electronics, Metrology

Zakres tematyczny

Introduction. Measurement sensors properties in metrology. Sensors typology. Sensors manufacturing technologies.

Sensors and converters in measurement systems. Analogue, digital-analogue and analogue-digital converters. Sensors output signal transmission. Sensors and measurement converters interfaces. Inteligent sensors. Wireless sensory networks.

Temperature measurements. Resistance based thermometers. Thermoelectric thermometers. Semiconductor based temperature sensors. Pyrometers.

Pressure measurements. Piezoresistive sensors. Piezoresistive sensor error compensation. Strain gages. Capacitive sensors.

Liquid velocity and flow measurements. Liquid velocity measurements with anemometric method. Doppler velocimeters. Turbine flow meters.

Measurements of movement. Inductive and capacitive movement sensors. Proximity sensors. Fiber optic movement sensors. Ultrasonic converters in movement measurements. Motion parameters measurement. Rotational speed measurements. Vibrations and quakes measurements. Piezoelectric accelerometers. Capacitive accelerometers.

Force and mass measurements. Strain gages. Strain gages measurement systems. Piezoelectric force sensors.

Metody kształcenia

- lecture: conventional/traditional lecture
- laboratory: work in the groups, practical excersises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole	Metody weryfikacji	Forma zajęć
	efektów		
Is able to plan and carry out measurements of the characteristics of sensors,		 bieżąca kontrola na zajęciach 	 Laboratorium
transducers and elements of the signal processing path measurement		 sprawdzian 	
		 wykonanie sprawozdań 	
		laboratoryjnych	

Opis efektu	Symboleefektów Metody weryfikacji	Forma zajęć	
Is able to replace the basic functional blocks of the modern measurement signal processing path	• kolokwium	• Wykład	
Is aware of the requirements for sensors in industrial measurements	• kolokwium	• Wykład	
The student knows the parameters and methods used to describe and evaluat static and dynamic properties of the measuring sensors	e • kolokwium	• Wykład	

Warunki zaliczenia

Lecture - the passing condition is to obtain a positive mark from the final test.

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Calculation of the final grade: lecture 50% + laboratory 50%.

Literatura podstawowa

1. Fraden J.: Handbook of modern sensors. Springer, 2010

- 2. Nawrocki W.: Measurement Systems and Sensors. Artech House Publishers, 2005
- 3. Pallas-Areny R., Webster J.G.: Sensors and signal conditioning. John Willey& Sons, Inc., 2001
- 4. Zakrzewski J, Kampik M.: Czujniki i przetworniki pomiarowe. Podręcznik problemowy. Wydawnictwo Politechniki Śląskiej, Gliwice, 2013
- 5. Miłek M.: Metrologia elektryczna wielkości nieelektrycznych. Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra, 2006

Literatura uzupełniająca

1. Tumanski S.: Principles of electrical measurement. Taylor & Francis, 2006

- 2. Horowitz P., Hill W.: The art electronics. Cambridge University Press, 2017
- 3. Kester W.: Przetworniki A/C i C/A. Teoria i praktyka. Wydawnictwo BTC, Legionowo, 2012

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 11-04-2022 09:05)

Wygenerowano automatycznie z systemu SylabUZ