Automation of industrial process - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Automation of industrial process
Kod przedmiotu	11.9-WE-AutD-AutomIndProc-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka / Komputerowe Systemy Automatyki
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus drugiego stopnia
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacje o przedmiocie

mormacje o przedmocie	
Semestr	3
Liczba punktów ECTS do zdobycia	4
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	dr hab. inż. Paweł Majdzik, prof. UZ

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Zaliczenie na ocenę
Laboratorium	30	2	-	-	Zaliczenie na ocenę

Cel przedmiotu

- To provide basic knowledge about methods of designing automated production systems
- To provide the ability to design and program diagnostic procedures for system components, devices and
- To provide the ability to design and implement control strategy of production systems
- To give basic requirements for the design of real-time systems

Wymagania wstępne

Sensors and industrial measurements, programming in C and C ++, PLC programming

Zakres tematyczny

Introduction. Technical possibilities of automation of industrial processes. Basic elements of an industrial automation system. Levels of the automation system and their tasks and requirements. Graphic representation of industrial processes. Automation in selected industries: mechanical, hydraulic, pneumatic, electric systems, etc.

Automation devices and systems, controllers used to automate industrial system. Distributed automation structures - topology, advantages and disadvantages. Automation systems with hardware and software redundancy. Representation of industrial process data in automation systems. PLC programmable controllers - construction, applications and operating modes.

Communication in the industrial ETHERNET network. Real time systems : classification of requirements in real time systems. Concurrency of tasks and its implementation. Asynchronous and synchronous programming of real time systems. Synchronization machanisms : semaphores, monitors and critical areas. Communication between tasks (processes): shared memory and message passing. Task scheduling methods.

Metody kształcenia

Lecture: conventional lecture, discussion

Laboratory: laboratory exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can characterize the basic components of the production system and distinguish	 aktywność w trakcie zajęć 	 Laboratorium
the levels of automation of the production process	 bieżąca kontrola na zajęciac 	h
Can characterize the methods and devices for transmission in distributed	 aktywność w trakcie zajęć 	 Wykład
production systems	 kolokwium 	 Laboratorium

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can design and optimize the structure of the Flexible Systems using discrete	 kolokwium 	 Wykład
optimization methods and programming with restrictions	• konspekt	Laboratorium
Can design and write prgrams for PLC	• aktywność w trakcie zajęc	• Laboratorium
Knows the construction of PLC controllers and can give examples of their	 aktywność w trakcie zaję 	• Wykład
applications	• dyskusja	 Laboratorium
	 kolokwium 	

Warunki zaliczenia

Lecture - the passing condition is to obtain a positive mark from the examination.

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Calculation of the final grade: lecture 50% + laboratory 50%

Literatura podstawowa

1. Sawik, T.: Supply Chain Disruption Management Using Stochastic Mixed Integer Programming. Springer, 2018

2. Patel, D. Introduction Practical PLC (Programmable Logic Controller) Programming, GRIN Verlag, 2018

Literatura uzupełniająca

Groover, M. ,Automation, Production Systems, and Computer-Integrated Manufacturing, Pearson Education Limited, 2015

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 11-04-2022 09:05)

Wygenerowano automatycznie z systemu SylabUZ