Decentralized systems of control engineering and robotics - opis przedmiotu

Informacje ogólne

Nazwa przedmiotu Decentralized systems of control engineering and robotics Kod przedmiotu 11.9-WE-AutD-DSoCEaR-Er Wydział Wydział Nauk Inżynieryjno-Technicznych
Kod przedmiotu 11.9-WE-AutD-DSoCEaR-Er Wydział Wydział Nauk Inżynieryjno-Technicznych
Wydział Wydział Nauk Inżynieryjno-Technicznych
Kierunek Automatyka i robotyka / Komputerowe Systemy Automatyki
Profil ogólnoakademicki
Rodzaj studiów Program Erasmus drugiego stopnia
Semestr rozpoczęcia semestr zimowy 2022/2023

Informacje o przedmiocie

Semestr	3
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	dr hab. inż. Paweł Majdzik, prof. UZ

Formy zajęć							
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia		
Wykład	30	2	-		Zaliczenie na ocenę		
Laboratorium	30	2	-	-	Zaliczenie na ocenę		

Cel przedmiotu

- To give knowlege about decentralized automation and robotics systems
- To provide understanding individual degrees of decentralization of control systems
- To provide the ability to design of decentralized automation and robotics systems

Wymagania wstępne

PLC programing, SCADA systems

Zakres tematyczny

Introduction. Functional structures of computer automation systems. Hardware structures - classification. Characteristics of systems: DCS, hybrid system, SCADA system Review of DCS system structures, network solutions, redundancy. Overview of stations: functions, hardware structures, redundancy, software. Development fields: new functions of DCS systems, advanced control algorithms and diagnostics in DCS systems.

Introduction to Proficy Process Systems. Designing DCS systems. Architecture servey of Proficy Process Systems. Engineering stations. Process data processing. Operator consoles. Archiving and processing of data.

Distributed system structures - topology, advantages and disadvantages. Automation systems with hardware and software redundancy. Representation of industrial process data in automation systems.

Metody kształcenia

Lectures, laboratory exercises.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can implement the proposed DCS system, and can plan and carry out its tests		 aktywność w trakcie zajęć 	 Laboratorium
		• dyskusja	
Can list and characterize various solutions of DCS class systems		• dyskusja	• Wykład
(decentralized control systems) and their structures		 kolokwium 	Laboratorium
Can prepare and carry out a project of DCS applications for the control and		 aktywność w trakcie zajęć 	• Wykład
supervision of industrial processes		 dokumentacja praktyki 	 Laboratorium

Warunki zaliczenia

Lecture - the passing condition is to obtain a positive mark from test.

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Calculation of the final grade: lecture 50% + laboratory 50%

Literatura podstawowa

1. A.G. Aghdam, J. Lavaei: Decentralized control of interconnected systems, VDM Verlag, Berlin, 2008

2. Bailey D. I E. Wright: Practical SCADA for Industry, Elsevier, London, 2003

Literatura uzupełniająca

1. GE Fanuc: Proficy Process Systems - www.astor.com.pl

2. Żak S, Systems and Control, Oxford University Press, New York, 200

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 11-04-2022 09:05)

Wygenerowano automatycznie z systemu SylabUZ