Advanced decision support systems - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Advanced decision support systems
Kod przedmiotu	06.0-WE-AutD-AdvDecSuppSyst-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka / Komputerowe Systemy Automatyki
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus drugiego stopnia
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacje o przedmiocie

informable o przedmoore	
Semestr	3
Liczba punktów ECTS do zdobycia	3
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	dr hab. inż. Andrzej Pieczyński, prof. UZ

Formy zajęć								
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia			
Wykład	15	1		-	Zaliczenie na ocenę			
Laboratorium	15	1	-	-	Zaliczenie na ocenę			

Cel przedmiotu

- to familiarize students with advanced techniques of extracting knowledge from data
- to know methods of applying soft computing in decision making systems
- shaping the skills of building hybrid expert systems
- acquiring skills in building decision systems with uncertain and imprecise knowledge

Wymagania wstępne

Decision support systems, Artificial intelligence methods.

Zakres tematyczny

Making decisions in the conditions of incomplete, uncertain and imprecise information. Parametric and nonparametric decision problems. Application of expert systems. Theory of possibilities. Application of rough and fuzzy sets in knowledge bases. Decision tree optimization. Discovering knowledge in databases, data mining. Preliminary preparation of data. The use of soft calculations in extracting knowledge from data (data mining).

Application of neural networks in decision making. Neural networks in grouping and classification. Extraction of knowledge from data using neural networks. Fuzzy decision systems. Neurofuzzy systems in creating knowledge base. Fuzzy classifiers. Various types of neuro-fuzzy decision-making systems. The use of rough sets in decision support. Rough sets based on dominance. Induction of classification patterns in the form of decision rules. Designing decision support systems. Hybrid decision systems.

Metody kształcenia

Lecture, laboratory exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole M	letody weryfikacji	Forma zajęć
	efektów		
Has knowledge of methods for describing uncertain and imprecise		• kolokwium	 Wykład
knowledge			
Has knowledge of the functioning of a hybrid decision support system		• kolokwium	• Wykład
Has knowledge on the structure of approximate and complex expert		• kolokwium	• Wykład
systems			
Is able to develop an optimal representation of uncertain and imprecise		 bieżąca kontrola na zajęciach 	• Laboratorium
knowledge using selected elements of artificial intelligence		 wykonanie sprawozdań laboratoryjnych 	

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Is able to prepare a description of knowledge combining selected elements of artificial intelligence and design the structure of a hybrid expert system	5	 bieżąca kontrola na zajęciach obserwacja i ocena aktywności na zajęciach 	• Laboratorium
Is able to prepare documentation of the implemented system and is attentive in obtaining its completeness		 bieżąca kontrola na zajęciach wykonanie sprawozdań laboratoryjnych 	• Laboratorium
Is able to use soft computing in extracting knowledge from data (data mining)		 bieżąca kontrola na zajęciach obserwacje i ocena umiejętności praktycznych studenta 	• Laboratorium
Is aware of the role of decision systems in supporting managerial activities in enterprises	\$	• kolokwium	• Wykład
Is creative in choosing the environment for building a complex expert system		• kolokwium	• Wykład

Warunki zaliczenia

Lecture – the main condition to get a pass is a sufficient mark in a written or oral exam. Laboratory – the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester. Calculation of the final grade: lecture 50% + laboratory 50%

Literatura podstawowa

J. Łęski, Systemy neuronowo-rozmyte, Wydawnictwa Naukowo-Techniczne, Warszawa, 2008.

2. R. K. Nowicki, Rozmyte systemy decyzyjne w zadaniach z ograniczoną wiedzą, Akademicka Oficyna Wydawnicza Exit, Warszawa, 2009.

3. D. Rutkowska, M. Piliński, L. Rutkowski, Sieci neuronowe, algorytmy genetyczne i zbiory rozmyte, Wydawnictwo Naukowe PWN, Warszawa, 1999.

4. J. Surma J.: Business Intelligence Systemy wspomagania decyzji biznesowych, WN PWN SA, Warszawa 2012.

5. D.T. Laros: Metody i modele eksploracji danych. WN PWN SA, Warszawa 2012.

Literatura uzupełniająca

- 1. Pieczyński, Reprezentacja wiedzy w diagnostycznym systemie ekspertowym, Lubuskie Towarzystwo Naukowe w Zielonej Górze, Zielona Góra, 2003.
- 2. B. Nadiru, J. Y. Cheung, Fuzzy Engineering Expert Systems with Neural Network Applications, John Wiley & Sons, Inc. New York, 2002.

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 11-04-2022 09:05)

Wygenerowano automatycznie z systemu SylabUZ