Fault-tolerant systems - course description

	•				
General information					
Course name	Fault-tolerant systems				
Course ID	06.0-AutD-SterTolerUszkod-Er				
Faculty	Faculty of Computer Science, Electrical Engineering and Automatics				
Field of study	Automatic Control and Robotics / Computer Control Systems				
Education profile	academic				
Level of studies	Second-cycle Erasmus programme				
Beginning semester	winter term 2022/2023				

Course information				
Semester	2			
ECTS credits to win	4			
Course type	optional			
Teaching language	english			
Author of syllabus	• prof. dr hab. inż. Marcin Witczak			

Classes forms									
The class form	Hours per semester (full-time)	Hours per week (full-time) Hours per semester (part-time)	Hours per week (part-time) Form of assignment				
Laboratory	30	2		-	Credit with grade				
Lecture	15	1	-	-	Credit with grade				

Aim of the course

Introduction to modern control systems affected by disturbances and faults.

Detailed obejctives:

- 1) Introduction to actuator and sensor fault estimation
- 2) Introduction to fault-tolerant control
- 3) Integration of fault estimation and fault-tolerant control

Prerequisites

Essential calculus and linear algebra

Scope

Essential definitions of fault diagnosis: analyltical and hardware redundancy, fault detection, isolation and identification. Classical fault detection techniques: parameter estimation, parity relation and state observers. Actuator and sensor fault estimation. Passive and active fault-tolerant control. Fault-tolerant control = fusion of control and diagnostics: passive and active solutions. Integration of fault estimation and fault tolerant control. Essential solutions used in fault-tolerant control. Application examples.

Teaching methods

Problem based lecture, classical lecture.

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Skills of describing essential fault-tolerant control schemes		 a preparation of a project 	 Lecture
		 an evaluation test 	 Laboratory
		• an exam - oral, descriptive, test and other	er
Knowledge and skills concerning design and implementation of fault		a preparation of a project	• Lecture
estimation schemes.		 an evaluation test 	 Laboratory
		• an exam - oral, descriptive, test and other	er
Skills in indicating the possibility of coupling fault diagnosis and		a preparation of a project	• Lecture
control schemes		 an evaluation test 	 Laboratory
		• an exam - oral, descriptive, test and other	er
Knowledge about essential fault diagnosis features		a preparation of a project	Lecture
		 an evaluation test 	 Laboratory
		 an exam - oral, descriptive, test and other 	er

Assignment conditions

Lecture - positive scores concerning an exam

Lab - positive scores concerning a written test as well as all laboratory project tasks

Recommended reading

1. Diagnostyka procesów. Modele, metody sztucznej inteligencji, zastosowania. Red: Korbicz J., Kościelny J.M., Kowalczuk Z., Cholewa W. -Wydawnictwo Naukowo-Techniczne, Warszawa, 2002. 2. Kościelny J.M.: Diagnostyka zautomatyzowanych procesów przemysłowych. - Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2001. 3. Witczak M.: Modelling and estimation strategies for fault diagnosis of non-linear systems. - Berlin: Springer, 2007 4. Witczak M.: Fault diagnosis and fault-tolerant control strategies for non-linear systems. - Berlin: Springer, 2013

Further reading

Notes

Modified by dr hab. inż. Wojciech Paszke, prof. UZ (last modification: 11-04-2022 09:05)

Generated automatically from SylabUZ computer system