Software modelling techniques - course description

General information	
Course name	Software modelling techniques
Course ID	11.3-WE-INFD-SoftModellTechn-Er
Faculty	Faculty of Computer Science, Electrical Engineering and Automatics
Field of study	Computer Science
Education profile	academic
Level of studies	Second-cycle Erasmus programme
Beginning semester	winter term 2022/2023

Course information				
Semester	1			
ECTS credits to win	5			
Course type	obligatory			
Teaching language	english			
Author of syllabus	• dr inż. Grzegorz Bazydło			

Classes forms								
The class form	Hours per semester (full-time)	Hours per week (full-time) Hours per semester (part-time)	Hours per week (part-time) Form of assignment			
Lecture	30	2	•	-	Credit with grade			
Laboratory	30	2	•	-	Credit with grade			

Aim of the course

- Familiarize students with the bases of software engineering and program modelling techniques.
- Shaping skills in business process modelling.
- Familiarize students with object modelling principles.
- Shaping skills in program modeling with the use of Unified Modelling Language (UML).

Prerequisites

Object-oriented programming

Scope

- Elements of software engineering. Software development. The software crisis and countermeasures.
- Conceptual modeling. The role of modeling in software design. Historical illustration of modern modeling techniques. Model-Driven Development approach. Model-Driven Architecture.
- · Business analysis. Business process modeling in BPMN notation. Business use cases. Modeling software based on the BPMN model.
- Unified Modeling Language. Origin, definition, and goals of UML. UML diagrams description.
- Model-Driven Development and Model-Driven Architecture.
- Analysis, specification, and documenting of the user requirements. Use case modelling. Solution architecture design.
- Agile methods. Software life cycle.
- Fundamentals of object-oriented design (e.g., classes, inheritance, generalization, specialization, polymorphism), relations between objects. System model development.
- Modeling the user interface.

Teaching methods

Lecture: conventional lecture. **Laboratory**: laboratory exercises.

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols Methods of verification	The class form
Student knows the basics of object-oriented programming and can design programs using an object-oriented paradigm.	 an ongoing monitoring during classes 	 Laboratory
Student can model the software using the appropriate modelling languages.	 an ongoing monitoring during classes 	 Laboratory
Student knows the basics of UML, the most important types of UML diagrams and their use.	• a test	• Lecture
Student has the knowledge about languages and techniques of modelling software and business processes.	• a test	• Lecture

Outcome description Outcome symbols Methods of verification The class form

Student understands the need for software modelling to facilitate its design and increase its credibility.

a test

Lecture

Assignment conditions

Lecture: the main condition to get a pass are sufficient marks for all written tests conducted during the semester.

Laboratory: a condition of pass is to obtain positive grades from all laboratory exercises that are expected to be performed within the laboratory program.

Composition of the final grade: lecture: 50% + laboratory: 50%

Recommended reading

- 1. Sommerville I.: Software Engineering (10th Edition), Pearson Education, 2016.
- 2. Booch G., Rumbaugh J., Jacobson I.: The Unified Modeling Language User Guide, Second Edition, Addison-Wesley, 2005.
- 3. Pilone D., Pitman N.: UML 2.0 in a Nutshell, A Desktop Quick Reference, O'Reilly Media, 2005.
- 4. Shapiro R., White S. A., Bock C., Palmer N. et al: BPMN 2.0 Handbook Second Edition, Future Strategies Inc., 2012.
- 5. Martin R. C.: Agile Software Development, Principles, Patterns, and Practices, Pearson Education, 2013.

Further reading

- 1. Brookes F. P.: The Mythical Man-Month, Anniversary Edition: Essays On Software Engineering, Addison-Wesley, 2010.
- 2. Osterwalder A., Pigneur Y.: Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers, John Wiley & Sons, 2010.
- 3. Rasmusson J.: The Agile Samurai: How Agile Masters Deliver Great Software, The Pragmatic Programmers LLC, 2010.
- 4. Rumbaugh J., Jacobson I., Booch G.: The Unified Modeling Language Reference Manual, Second Edition, Addison-Wesley, 1999.

Notes

Modified by dr inż. Grzegorz Bazydło (last modification: 19-04-2022 19:04)

Generated automatically from SylabUZ computer system