Visualization systems - opis przedmiotu

Informacje ogólne	
informacje ogome	
Nazwa przedmiotu	Visualization systems
Kod przedmiotu	11.9-WE-INFD-VisualSyst-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Informatyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus drugiego stopnia
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacje o przedmiocie	
Semestr	2
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• dr inż. Adam Markowski

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Zaliczenie na ocenę
Laboratorium	30	2	-	-	Zaliczenie na ocenę
Projekt	15	1	-	-	Zaliczenie na ocenę

Cel przedmiotu

To familiarize students with the basic functions and structure of visualization systems.

To shape basic skills in the creation of applications for visualization of industrial processes.

To shape basic skills in designing applications for visualization of industrial processes.

Wymagania wstępne

Principles of programming, Microcomputer circuits and systems, Computer networks.

Zakres tematyczny

Introduction. Monitoring and visualisation of industrial processes. The genesis of visualization systems. Structure and functions of visualisation systems - HMI, SCADA. Requirements put forward for visualisation systems. Visualisation systems in the information structure of an enterprise SCADA, MES, ERP. Exemplary applications of visualisation systems.

Elements of visualisation systems. Intelligent measurement-control devices in visualisation systems. Architecture of a communication layer of visualisation systems. Communication protocols in visualisation systems. The use of radio modems in visualization system.

The use of visualization systems. Configuring visualization systems in developing synoptic screens, defining variables, scripting and animation links, configuring alarms and trends, archiving variables, creating reports in text files. The use of advanced modules to create recipes.

Object-oriented technologies in visualization systems. The integration of visualization systems with database systems. The use of object-oriented technology for the exchange of data between the visualization application and industrial automation devices (PLCs).

The procedure for designing visualization systems. Strategies of designing synoptic screens of visualization systems.

Metody kształcenia

Lecture, laboratory exercises, project.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can apply the right strategy in industrial process visualization application	 bieżąca kontrola na zajęciach 	 Laboratorium
design	• projekt	Projekt
Can make a simple application for visualization of industrial processes	bieżąca kontrola na zajęciach	Laboratorium
containing synoptic images	 wykonanie sprawozdań laboratoryjny 	rch

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć	
Can use the functions associated with recipes in the applications for	 bieżąca kontrola na zajęciac 	h • Laboratorium	
visualization of industrial processes	• wykonanie sprawozdań labor	 wykonanie sprawozdań laboratoryjnych 	
Knows and can apply variable alarm mechanisms, real-time variable value	bieżąca kontrola na zajęciaci	h • Wykład	
tracking and historic variables servicing mechanisms	• sprawdzian	 Laboratorium 	
Understands the need for application of visualization systems, can presen	t • sprawdzian	Wykład	
basic functions and visualization system structure			

Warunki zaliczenia

Lecture – the credit is given for obtaining a positive grade in written or oral tests carried out at least once in the semester.

Laboratory - the credit is given for positive grades in all laboratory exercises to be carried out according to the laboratory syllabus.

Project – the credit is given for positive grades in project exercises to be carried out according to the syllabus.

Calculation of the final grade: lecture 40% + laboratory 30% + project 30%

Literatura podstawowa

- 1. Winiecki W., Nowak J., Stanik S.: Graphic integrated software environments for designing measuring controlling systems, Mikom, Warszawa, 2001 (in Polish).
- 2. Kwaśniewski J.: PLC in engineering practice, BTC, Legionowo, 2008 (in Polish).
- 3. Kwiecień R.: Computer systems for industrial automation, Helion, Gliwice, 2012 (in Polish).
- 4. Wonderware InTouch HMI Visualisation Guide, Invensys, 2012.
- 5. Wonderware InTouch HMI Data Management Guide , Invensys, 2012.
- 6. Wonderware InTouch HMI Alarms and Events Guide, Invensys, 2012.
- 9. Bailey D., Wright E.: Practical SCADA for Industry, Elsevier, London, 2003.

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr inż. Adam Markowski (ostatnia modyfikacja: 13-04-2022 14:21)

Wygenerowano automatycznie z systemu SylabUZ