System integration - course description

General information	
Course name	System integration
Course ID	11.3-WE-INFD-IntegrSyst-Er
Faculty	Faculty of Computer Science, Electrical Engineering and Automatics
Field of study	Computer Science
Education profile	academic
Level of studies	Second-cycle Erasmus programme
Beginning semester	winter term 2022/2023

Course information	
Semester	3
ECTS credits to win	4
Course type	optional
Teaching language	english
Author of syllabus	

Classes forms								
The class form	Hours per semester (full-time)	Hours per week (full-time	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment			
Lecture	15	1		-	Credit with grade			
Project	45	3	-	-	Credit with grade			

Aim of the course

- Introduction to IoT integration in monitoring and visualization
- Introduction to modern method of tracking and identification or vehicles and products
- Design and implemntation of HMI using IoT tools
- Introduction to selected work schedulling methods of machines and vehicles

Prerequisites

Object-oriented programming, databases

Scope

Monitoring and visualization of conventional and autonomous vehicles:

- Monitoring vehicle parameters with IMU (Inertial Measurement Unit)
- Implementation of monitoring system in Windows using WiFi
- Vehicle performance visualization using NGIMU

Tracking vehicles and goods

- Introduction to Openmatics DeTAGtive IoT
- Identification of machines and goods using DeTAGtive
- Implementacja in Android

Introduction to work schedulling of vehicles and machines

- Max plus algebra
- System modelling
- Implementation of predictive schedulling

IOT Environment: Keep it simple. Manage Everything (KIS.ME)

- system integration with IoT buttons and lights
- Essential Key Performance Indicators, KPI
- Monitoring system performance with trends and histograms

Teaching methods

Lecture: conventional lecture Project: dedicated project tasks

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Outcome description	Outcome symbols	Methods of verification	The class form
Can integrate selected IoT tools within a system realizing a		a preparation of a project	 Lecture
desired mission		 an observation and evaluation of the student's practical skills 	Project
		 an ongoing monitoring during classes 	
Has essential knowledge about select IoT tools		an evaluation test	• Lecture
		 an ongoing monitoring during classes 	Project
Has an essential knowledge enabling integration of IoT and		• an evaluation test	• Lecture
НМІ		 an observation and evaluation of the student's practical skills 	Project
Can work individually and within a group		• an observation and evaluation of the student's practical	• Lecture
		skills	 Project
Has an essential knowledge and can implement schedulling		a preparation of a project	• Lecture
tools for machines		 an evaluation test 	Project
		• an observation and evaluation of the student's practical	
		skills	

Assignment conditions

Lecture - positive scores of written tests

Project - positive scores concerning all designated project tasks

Final score composition = lecture: 40% + project: 60%

Recommended reading

Gerber A., Craig C.: Android Studio. Wygodne i efektywne tworzenie aplikacji, Helion, Gliwice 2016

Ross E., Ross J.: Unity i C#. Podstawy programowania gier, Helion, Gliwice, 2018

Heidergott, B., Geert Jan Olsder, and Jacob Van Der Woude. Max Plus at work: modeling and analysis of synchronized systems: a course on Max-Plus algebra and its applications. Vol. 48. Princeton University Press, 2014.

Documentation of Next Generation Inertial Measurement Unit: http://x-io.co.uk/ngimu/

Documentation of Openmatics Detagtive: https://aftermarket.zf.com/go/en/openmatics/home/

Further reading

Notes

Modified by prof. dr hab. inż. Marcin Witczak (last modification: 22-04-2022 09:40)

Generated automatically from SylabUZ computer system