System integration - opis przedmiotu

Informacje ogolne	
Nazwa przedmiotu	System integration
Kod przedmiotu	11.3-WE-INFD-IntegrSyst-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Informatyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus drugiego stopnia
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacie o przedmiocie

Semestr	3
Liczba punktów ECTS do zdobycia	4
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	

Formy zaieć

·) ·	10				
Forma zajęć Liczba godzin w semestrze		Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)	
Wykład	15	1	-	-	Zaliczenie na ocenę
Projekt	45	3	-	-	Zaliczenie na ocenę

Cel przedmiotu

- Introduction to IoT integration in monitoring and visualization
- · Introduction to modern method of tracking and identification or vehicles and products
- Design and implemntation of HMI using IoT tools
- Introduction to selected work schedulling methods of machines and vehicles

Wymagania wstępne

Object-oriented programming, databases

Zakres tematyczny

Monitoring and visualization of conventional and autonomous vehicles:

- Monitoring vehicle parameters with IMU (Inertial Measurement Unit)
- Implementation of monitoring system in Windows using WiFi
- Vehicle performance visualization using NGIMU

Tracking vehicles and goods

- Introduction to Openmatics DeTAGtive IoT
- · Identification of machines and goods using DeTAGtive
- Implementacja in Android

Introduction to work schedulling of vehicles and machines

- Max plus algebra
- System modelling
- Implementation of predictive schedulling

IOT Environment: Keep it simple. Manage Everything (KIS.ME)

- system integration with IoT buttons and lights
- Essential Key Performance Indicators, KPI
- · Monitoring system performance with trends and histograms

Metody kształcenia

Lecture: conventional lecture Project: dedicated project tasks

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can integrate selected IoT tools within a system realizing a		 bieżąca kontrola na zajęciach 	 Wykład
desired mission		 obserwacje i ocena umiejętności praktycznych studenta przygotowanie projektu 	• Projekt
Can work individually and within a group		 obserwacje i ocena umiejętności praktycznych studenta 	• Wykład
			 Projekt
Has an essential knowledge and can implement schedulling		• kolokwium	 Wykład
tools for machines		 obserwacje i ocena umiejętności praktycznych studenta 	• Projekt
		 przygotowanie projektu 	
Has an essential knowledge enabling integration of IoT and		• kolokwium	 Wykład
HMI		 obserwacje i ocena umiejętności praktycznych studenta 	• Projekt
Has essential knowledge about select IoT tools		• bieżąca kontrola na zajęciach	 Wykład
		• kolokwium	 Projekt

Warunki zaliczenia

Lecture - positive scores of written tests Project - positive scores concerning all designated project tasks Final score composition = lecture: 40% + project: 60%

Literatura podstawowa

Gerber A., Craig C.: Android Studio. Wygodne i efektywne tworzenie aplikacji, Helion, Gliwice 2016

Ross E., Ross J.: Unity i C#. Podstawy programowania gier, Helion, Gliwice, 2018

Heidergott, B., Geert Jan Olsder, and Jacob Van Der Woude. Max Plus at work: modeling and analysis of synchronized systems: a course on Max-Plus algebra and its applications. Vol. 48. Princeton University Press, 2014.

Documentation of Next Generation Inertial Measurement Unit: http://x-io.co.uk/ngimu/

Documentation of Openmatics Detagtive: https://aftermarket.zf.com/go/en/openmatics/home/

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez prof. dr hab. inż. Marcin Witczak (ostatnia modyfikacja: 22-04-2022 09:40)

Wygenerowano automatycznie z systemu SylabUZ