Astronomy - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Astronomy
Kod przedmiotu	13.7-WF-FizP-A-S17
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	Fizyka
Profil	ogólnoakademicki
Rodzaj studiów	pierwszego stopnia z tyt. licencjata
Semestr rozpoczęcia	semestr zimowy 2022/2023

Informacje o przedmiocie	
Semestr	2
Liczba punktów ECTS do zdobycia	2
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• dr hab. Wojciech Lewandowski, prof. UZ

Formy zajęć

· · · · · · · · · · · · · · · · · · ·								
Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia			
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)				
Wykład	30	2	-	-	Zaliczenie na ocenę			

Cel przedmiotu

Presentation of basics ideas and problems of modern astronomy.

Wymagania wstępne

The knowledge of physics at the high-school level

Zakres tematyczny

Elementary phenomena on the celestial sphere. Astronomical coordinate systems, time in astronomy. The Solar system and the Kepler's laws. The sun as an example star. Stellar energy sources. Stars – physical parameters and classification. Evolution of stars. Binary and multiple star systems. Stellar clusters. Interstellar matter. The structure of the Milky Way Galaxy. Galaxies and the universe. The beginnings and the future of the Universe. Big Bang theory and the cosmic background radiation.

Metody kształcenia

Classic lecture

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student is able to describe the elementary phenomena observed on the celestial sphere. He can name and	• K1A_W01	 kolokwium 	 Wykład
describe the basic astronomical coordinate systems. He can name and characterize the basic constituents of the	• K1A_W03	 odpowiedź 	
solar system – planets with their satellites, asteroids and comets, and the laws that govern their motions. He is	• K1A_U01	ustna	
able to describe the basic physical properties of the Sun, and the phenomena on its surface. He can explain the	• K1A_U02		
structure of the Sun and the sources of its energy. He can describe the basic parameters and the structure of stars	• K1A_U06		
of various spectral types. He can explain the evolution of the stars. Student is able to describe the basic			

interactions happening in binary stars. He can describe the Open and Globular Clusters, and explain their significance in our understanding of solar evolution. He can name and describe the basic components of the interstellar medium, and the structure of the Milky Way galaxy. He is able to identify and characterize various types of galaxies. He is able to explain the observational facts that led to the development of the big bang theory. He can name and describe the main stages of Universe's evolution.

Warunki zaliczenia

Grade - oral test; passing criteria - positive grade.

Literatura podstawowa

- [1] J. M. Kreiner, Astronomia z astrofizyką, PWN, Warszawa 1988.
- [2] F. Shu, Galaktyki, gwiazdy, życie, Prószyński i S-ka, 2003.
- [3] D. Block, Astronomia dla każdego, Marba Crown 1994.
- [4] E. Rybka, Astronomia ogólna, PWN, Warszawa 1983.
- [5] E. Chaisson, S. McMillan, Astronomy: A Beginner's Guide to the Universe
- [6] M. Zeilik, S.A. Gregory, Introductory Astronomy & Astrophysics'

[7] L. Kay, 21st Century Astronomy

Literatura uzupełniająca

[1] M. Kubiak, Gwiazdy i materia międzygwiazdowa, PWN, Warszawa 1994.

[2] M. Jaroszyński, Galaktyki i budowa Wszechświata, PWN, Warszawa 1993.

[3] Ch. Keeton, Principles of Astrophysics, Springer, 2014

[4] F. Shu, The Physical Universe: An Introduction to Astronomy

[5] B. W. Carroll, D. A. Ostlie, An Introduction to Modern Astrophysics and Cosmology, Pearson, Addison-Wesley, San Francisco, 2006

Uwagi

Zmodyfikowane przez dr Marcin Kośmider (ostatnia modyfikacja: 04-04-2022 20:44)

Wygenerowano automatycznie z systemu SylabUZ