Systems of Stars and the structure of the Universe - opis przedmiotu

Informacje ogólne

Systems of Stars and the structure of the Universe
13.7-WF-FizP-SSU- 19
Wydział Nauk Ścisłych i Przyrodniczych
Fizyka
ogólnoakademicki
pierwszego stopnia z tyt. licencjata
semestr zimowy 2022/2023

Informacje o przedmiocie

Semestr	6
Liczba punktów ECTS do zdobycia	5
Występuje w specjalnościach	Astrofizyka komputerowa
Typ przedmiotu	obowiązkowy
Język nauczania	polski
Sylabus opracował	• dr hab. Wojciech Lewandowski, prof. UZ

Formy zajęć

· ····· · · · · · · · · · · · · · · ·									
Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia				
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)					
Wykład	30	2	-	-	Egzamin				
Ćwiczenia	30	2	-	-	Zaliczenie na				
					ocenę				

Cel przedmiotu

Consolidation and expansion of the basic astrophysical knowledge concerning star systems, star clusters, the structure of the Milky Way Galaxy. the galaxy clusters (including the Local Group), and the large scale structure of the Universe. Expansion of the knowledge about cosmology: the beginning and the future of the Universe, the Big Bang, Cosmic Microwave background, the cosmological constant. Methods of the distance estimation in astrophysics.

Wymagania wstępne

General knowledge about astrophysics and the basics of physics.

Zakres tematyczny

- Star systems: binary stars
- Star clusters: open and globular
- Basic information about the Milky Way.
- Structure of a galaxy
- Classification and evolution of galaxes
- Extragalactic astrophysics
- Methods of astrophysical distances estimation
- The basics of Cosmology

Metody kształcenia

Classical lecture, numerical exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student has basic knowledge about binary star systems. Student is able to point and describe the differences	• K1A_W01	• egzamin -	 Wykład
between open and globular clusters. She can describe stars in both types of clusters, and the clusters		ustny,	 Ćwiczenia
distribution in the galaxy. Student understands the method of distance estimation based on the color-		opisowy,	
brightness diagram for clusters. Studen is able to name and describe tha basic elements of the structure of a		testowy i	
galaxy, and point out the differences between them. He is able to describe the method of the estimation of the		inne	
Galactic rotation curve and interpret its shape in the context of dark matter theory. Student knows the basic		• praca	
classification of galaxies and understands their evolution. She is able to characterize the Local group of		pisemna	
galaxies and basic information about galaxy clusters. Student understands the basics of the Big Bang theory			
and the basic cosmological models. He understands the expansion of the Universe, the Hubble law, the			
importance of the cosmological constant and Cosmic Microwave background.			

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Student is able to conduct simple calculations involved in the solving of elementary problems of astrophysics. She is able ti interpret the results of simple astronomical observations, and based upon that he is able to estimate the basic properties of stars.	• K1A_U06	 egzamin - ustny, opisowy, testowy i inne praca pisemna 	 Wykład Ćwiczenia
Student is able to use basic knowledge of astrophysics to formulate simple scientific project	• K1A_K01 • K1A_K05	 egzamin - ustny, opisowy, testowy i inne praca pisemna 	 Wykład Ćwiczenia

Warunki zaliczenia

Wykład: Egzamin ustny; Warunek zaliczenia - pozytywna ocena z egzaminu.

Ćwiczenia: Poprawne i terminowe wykonanie prac domowych.

Ocena końcowa: 50% ocena z egzaminu + 50% ocena z ćwiczeń.

Przed przystąpieniem do egzaminu student musi uzyskać zaliczenie z ćwiczeń.

Literatura podstawowa

[1] F. Shu, Galaktyki, gwiazdy, życie, Prószyński i S-ka, 2003.

[2] M. Kubiak, Gwiazdy i materia międzygwiazdowa, PWN, 1994.

[3] A. Liddle, Wprowadzenie do kosmologii współczesnej, Prószyński i S-ka, 2000.

Literatura uzupełniająca

[1] P. Schneider, Extragalactic astronomy and Cosmology, Springer, 20

Uwagi

Zmodyfikowane przez dr Marcin Kośmider (ostatnia modyfikacja: 04-04-2022 20:51)

Wygenerowano automatycznie z systemu SylabUZ