Fundamentals of programming - course description

General information		
Course name	Fundamentals of programming	
Course ID	13.2-WF-FizP-FP-S21	
Faculty	Faculty of Physics and Astronomy	
Field of study	Physics	
Education profile	academic	
Level of studies	First-cycle studies leading to Bachelor's degree	
Beginning semester	winter term 2022/2023	

Course information		
Semester	1	
ECTS credits to win	5	
Course type	obligatory	
Teaching language	english	
Author of syllabus	dr Marcin Kośmider	

Classes forms					
The class form	Hours per semester (full-time)	Hours per week (full-time) Hours per semester (part-time)	Hours per week (part-time) Form of assignment
Laboratory	60	4	-	-	Credit with grade

Aim of the course

The aim of the course is to learn the basics of programming and the ability to use the acquired knowledge to solve a variety of problems, with particular emphasis on problems related to exact sciences. This approach to programming requires understanding not only the syntax of a programming language, but also the basics of algorithmics, software development phases, coding standards, the ability to work with documentation, and the analysis and reduction of a complex problem to a series of elementary problems. The basics of programming are also the necessary foundation for understanding other computer subjects such as numerical methods, object-oriented programming or modeling and computer simulations.

Prerequisites

Basic computer skills

Scope

- 1. A brief history and characteristics of the Python language
- 2. Work environment, naming conventions
- 3. Data types, variables, substitution operator, logical and mathematical operators
- 4. Conditional statement, conditional operator
- 5. Loops
- 6. Sequential data types: strings, lists, tuples, dictionaries, sets
- 7. Functions
- 8. Standard modules and packages, own modules
- 9. Exceptions
- 10. File operations
- 11. The concept of class and object, methods
- 12. Using numpy for calculations and simulations
- 13. Matplotlib introduction to data visualization

Teaching methods

Discussion, group work, work with documentation, brainstorming, lecture, presentation

Learning outcomes and methods of theirs verification

Outcome description Outcome symbols Methods of verification The class form

Outcome description	Outcome symbols	Methods of verification	The class form
The student is aware of the existence of Open Source software that is a professional alternative to	 K1A_W09 	 a discussion 	 Laboratory
commercial software. The student is aware of the speed of changes in the IT industry and the	 K1A_U08 		
related need to constantly improve their competences. The student is able to create and present a	 K1A_K01 		
report on the entrusted project.	 K1A_K04 		
	• K1A_K06		
The student is able to independently search and use tools and information helpful in solving a give	n • K1A_W09	• a quiz	 Laboratory
problem.	• K1A_U07		
The student is able to define and explain the problem posed by breaking it down into elementary	• K1A_W03	a discussion	 Laboratory
problems and presenting methods (algorithms) for the optimal solution to the problem.	 K1A_U03 	• a quiz	
	• K1A_U05		
The student knows data types, control instructions, functions, can work with static and dynamic	• K1A_W04	a quiz	 Laboratory
arrays and IO streams. Can use the knowledge and available tools to present a solution to a	 K1A_W09 		
problem (in particular in the field of physics and related fields) in the form of source code	 K1A_U04 		
	• K1A_U05		
The student knows the regulations and health and safety rules in force in the computer lab.	• K1A_W06	a discussion	Laboratory

Assignment conditions

The final grade consists of: 10% is the average of active participation in the classroom, 40% is the average of tests / tests during the semester, 50% is the grade of the final project.

Recommended reading

- 1. "Python. Wprowadzenie. Wydanie IV", M.Lutz, Helion
- 2. "Python dla każdego. Podstawy programowania. Wydanie III", M.Dawson, Helion
- 3. "Automatyzacja nudnych zadań z Pythonem. Nauka programowania", A. Sweigart

Further reading

1. "The Complete Python Course For Beginners" youtube na kanale Tech with Tim (https://www.youtube.com/watch?v=sxTmJE4k0ho)

Notes

Modified by dr Marcin Kośmider (last modification: 04-04-2022 20:43)

Generated automatically from SylabUZ computer system