Combinatorial Analysis - course description

General information				
Course name	Combinatorial Analysis			
Course ID	11.1-WK-MATD-CA-S22			
Faculty	Faculty of Mathematics, Computer Science and Econometrics			
Field of study	WMIIE - oferta ERASMUS			
Education profile	•			
Level of studies	Erasmus programme			
Beginning semester	winter term 2022/2023			

Course information				
Semester	2			
ECTS credits to win	5			
Course type	optional			
Teaching language	english			
Author of syllabus	• dr Magdalena Łysakowska			

Classes forms							
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment		
Lecture	30	2	-	-	Credit with grade		
Class	30	2	-	-	Credit with grade		

Aim of the course

Introducing students to basic definitions, theorems and methods of combinatorial analysis and examples of applications of them.

Prerequisites

Completed courses of mathematical analysis, linear algebra and discrete mathematics.

Scope

Lecture

- 1. The binomial coefficients (4 h)
- 2. Rook polynomials (4 h)
- 3. Latin squares (4 h)
- 4. Van der Waerden's Theorem, Schur's Theorem (4 h)
- 5. Map-colourings, Four Colour Theorem (4 h)
- 6. Minimax theorems (4 h)
- 7. Combinatorial designs (2 h)
- 8. Perfect codes, Hadamard's matrices (4 h)

Class

- 1. Proving combinatorial identities (2 h)
- 2. Applications of rook polynomials (4 h)
- 3. Making latin squares; proving properties of latin squares (4 h)
- 4. Applications of van der Waerden's and Schur's Theorems (4 h)

Test (2 h)

- 5. Applications of Four Colour Theorem and minimax theorems (4 h)
- 6. Proving properties of combinatorial designs; applications of combinatorial designs (4 h)
- 7. Constructing of perfect codes (4 h)

Test (2 h)

Teaching methods

Traditional lecture, discussion exercises, work in groups.

Learning outcomes and methods of theirs verification

Outcome description Outcome Methods of verification The class form symbols

Outcome description	Outcome symbols	Methods of verification	The class form
A student is able to perform proofs of basic combinatorial identities; to apply root polynomials to solve practical exercises; to use Hadamard's matrices and combinatorial designs to construct codes.	0	 a final test activity during the classes an exam - oral, descriptive, test and other 	• Lecture • Class
A student is able to perform the proof of Fisher's Theorem, knows the definition and examples of finite projective planes, is able to point connections between combinatorial designs and projective planes.	f	 a final test activity during the classes an exam - oral, descriptive, test and other 	• Lecture • Class
A student knows Sperner's Lemma, Schur's Theorem, van der Waerden's Theorem, Minkowski's Theorem, Radon's Theorem, Helly's Theorem, Tverberg's Theorem, knows proofs of this theorem and examples of their applications.	s	 a final test activity during the classes an exam - oral, descriptive, test and other 	• Lecture • Class
A student knows König-Egarváry's, Menger's, Ford-Fulkerson's Theorems, Four – Colour Theorem and is able to apply them to solve practical exercises.	1	 a final test activity during the classes an exam - oral, descriptive, test and other 	• Lecture • Class

Assignment conditions

- 1. Tests with tasks of different difficulty, allowing to evaluate whether the students have achieved specified learning outcomes in minimal level.
- 3. Written exam

The grade of the module is the arithmetic mean of the exercise grade and the exam grade. The prerequisite of the exam is to get a positive assessment of the exercise. The condition to obtain a positive evaluation of the module is the positive evaluation of the exam.

Recommended reading

- 1. V. Bryant, Aspects of Combinatorics. A wide-ranging introduction, Cambridge University Press, 1993.
- 3. J. Matoušek, Lectures on Discrete Geometry, Springer, New York, 2002.

Further reading

2. R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics - A foundation for computer science, Oren, 1994.

Notes

Modified by dr Magdalena Łysakowska (last modification: 19-04-2022 09:12)

Generated automatically from SylabUZ computer system