Quantum physics - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Quantum physics
Kod przedmiotu	13.2-WF-FizD-QP-S17
Wydział	Wydział Nauk Ścisłych i Przyrodniczych
Kierunek	WFiA - oferta ERASMUS
Profil	•
Rodzaj studiów	Program Erasmus
Semestr rozpoczęcia	semestr zimowy 2023/2024

Informacje o przedmiocie

informacje o przedmocie	
Semestr	2
Liczba punktów ECTS do zdobycia	6
Występuje w specjalnościach	Fizyka
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	 prof. dr Zbigniew Ficek
	 dr hab. Sylwia Kondej, prof. UZ

Formy zaję	rmy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia	
Ćwiczenia	30	2	-	-	Zaliczenie na ocenę	
Wykład	30	2	-	-	Egzamin	

Cel przedmiotu

To teach students advanced methods of quantum physics and their applications.

Wymagania wstępne

Knowledge of the basic concepts quantum physics, covered in the undergrad course "Quantum mechanics foundations".

Zakres tematyczny

- Basic concepts of quantum physics. Non-relativistic Schrodinger equation - Revisited.

- Multidimensional potential wells: Quantum wires and quantum dots.
- Density operator and its representations.
- Matrix representations and their applications.
- Electron spin. Pauli matrices and their applications.
- Quantum dynamics and pictures. Unitary transformations.
- Quantum harmonic oscillator. Annihilation and creation operators and their algebra.
- Quantum theory of two particles.
- Interaction of simple quantum systems with external fields. Zeeman and Stark effects. Diagonalization of the interaction Hamiltonian. Dressed states.
- Quantum model of two interacting systems. Entangled states.
- Time independent perturbation theory.
- Time dependent perturbation theory. Fermi golden rule.
- Entropy in quantum physics.
- Relativistic Schrodinger equation: Klein-Gordon equation.
- Dirac equation. Negative energy states. Spinors.

Metody kształcenia

Two hours per week are scheduled for lectures and two hours for tutorials. Lectures will cover the formal course content. Tutorials, solving problems and exercises on topics related to the lectures.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Apply the mathematical methods of quantum physics to solve practical		• dyskusja	 Wykład
problems, and analyse the results.		 egzamin - ustny, opisowy, testowy inne 	y i Ówiczenia
		• test	
Demonstrate the ability to apply several approximate methods.		• dyskusja	• Wykład
		 egzamin - ustny, opisowy, testowy inne 	y i • Ćwiczenia
		• test	
Demonstrate the ability to extend the non-relativistic to relativistic approach		• dyskusja	• Wykład
to quantum physics problems.		 egzamin - ustny, opisowy, testowy 	y i • Ćwiczenia
		inne	
		• test	
Is familiar with matrix representation of operators and wave function.		• dyskusja	• Wykład
		 egzamin - ustny, opisowy, testowy 	y i • Ćwiczenia
		inne	
		• test	

Warunki zaliczenia

Lectures: Final written exam. To obtain a passing grade student should provide correct answer to at least 2/3 of questions.

Tutorial: Activity during the tutorial hours demonstrating the ability of solving tutorial problems and a positive grade of the final test. Before taking the final lecture examination the student needs to obtain passing grade of the tutorials.

The final grade: the arithmetic average of the tutorial and lecture examination grades.

Literatura podstawowa

1. E. Merzbacher, Quantum Mechanics, (Wiley, New York, 1998).

2. R. Eisberg and R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, (Wiley, New York, 1985).

3. D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics (Cambridge University Press, 2021).

4. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics: Volume I: Basic Concepts, Tools, and Applications, Volume II: Angular Momentum, Spin, and Approximation Methods, (Wiley-VCH, 2019).

Literatura uzupełniająca

1. A. S. Davydov, Quantum Mechanics, (Pergamon, Oxford, 2013).

2. L. I. Schiff, Quantum mechanics, (McGraw-Hill, New York, 2010).

3. N. Zettili, Quantum Mechanics - Concepts and Applications (Wiley, 2022).

Uwagi

Zmodyfikowane przez dr hab. Maria Przybylska, prof. UZ (ostatnia modyfikacja: 30-04-2023 17:20)

Wygenerowano automatycznie z systemu SylabUZ