Introduction to atomic and molecular physics - course description

General information

General mormation				
Introduction to atomic and molecular physics				
13.2-WF-FizD-IAMP-S17				
Faculty of Physics and Astronomy				
WFiA - oferta ERASMUS				
·				
Erasmus programme				
winter term 2023/2024				

Course information

oourse mornation				
Semester	2			
ECTS credits to win	7			
Available in specialities	Physics			
Course type	obligatory			
Teaching language	english			
Author of syllabus	Anatol Nowicki			

Classes forms

The class form	Hours per semester (full-time)	Hours per week (full-time) Hours per semester (part-time)	Hours per week (part-time)) Form of assignment
Class	30	2	-	-	Credit with grade
Lecture	30	2	-	-	Exam

Aim of the course

The aim of the course is to teach the students methods and applications of quantum mechanics in description of matter-matter interactions; at the scale of one or a few atoms and energy scales around several electron volts. In particular we present the approximated methods, method of self consistent field and variational methods in atomic physics.

Prerequisites

Quantum mechanics and Classical electrodynamics courses.

Scope

LECTURE: One-electron atoms. Eigenvalues, quantum numbers, degeneracy, Zeeman effect, spin. The orbit-spin interaction. Identical particles, Pauli rule Multielectron atoms. Hartree-Fock theory, the self consistent field. The periodic table. Optical excitations, atomic spectra. Molecules, Born-Oppenheimer theory, LCAO MO theory. Molecular spectra, rotation, vibration-rotation and electron spectra. Raman effect.

CLASS: A hydrogen atom, quantum numbers, atom orbitals, spin. Multielectron atoms, the periodic table. The orbit-spin interaction, atomic spectra. Molecules spectra.

Teaching methods

Conventional lectures, calculate class.

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Skill of theoretical interpretation of experimental facts		• an exam - oral, descriptive, test and other	 Lecture
		• an ongoing monitoring during classes	 Class
Application of mathematical methods in solving physical		• an exam - oral, descriptive, test and other	• Lecture
problems		• an ongoing monitoring during classes	Class

Assignment conditions

LECTURE: The exam CLASS: Credits of exercises

Recommended reading

W. Kołos, J. Sadlej, Atom i cząsteczka, WNT, Warszawa 2007.
 J. Ginter, Wstęp do fizyki atomu, cząsteczki i ciała stałego, PWN, Warszawa 1986.

[3] I. Białynicki-Birula, M. Cieplak, J. Kamiński, Teoria kwantów, PWN, Warszawa 1991.

[4] W. Kołos, Chemia kwantowa, PWN, Warszawa 1980.

[5] L. Schiff, Mechanika kwantowa, PWN, Warszawa 1977.

Further reading Notes

Modified by dr Marcin Kośmider (last modification: 06-02-2023 22:55)

Generated automatically from SylabUZ computer system