Engineering of logistics processes in production - opis przedmiotu

Informacje ogólne

Engineering of logistics processes in production
06.9-WM-ZiIP-ZL-ANG-D-17_20
Wydział Nauk Inżynieryjno-Technicznych
Management and Production Engineering
ogólnoakademicki
drugiego stopnia z tyt. magistra inżyniera
semestr zimowy 2023/2024

Informacje o przedmiocieSemestr2Liczba punktów ECTS do zdobycia4Typ przedmiotuobowiązkowyJęzyk nauczaniaangielskiSylabus opracował• dr hab. inż. Waldemar Woźniak, prof. UZ

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Laboratorium	15	1	-	-	Zaliczenie na ocenę
Wykład	30	2	-	-	Egzamin

Cel przedmiotu

The main effect of the training will be to provide theoretical and practical information on the planning, management and control of logistics processes, in the sphere of production and to acquire decision-making skills in the field of production logistics.

Wymagania wstępne

Production and Service Management, Operations Research

Zakres tematyczny

Lecture

Production logistics in the strategy of the enterprise. Technical and organisational conditions of production logistics. The cycle of testing and streamlining logistics processes, in the sphere of production. Information base of the production logistics system; main task planning; planning which materials are required. Production planning and scheduling. Forms and methods of balancing tasks with resources. Control and inspection of the production process. Transport and storage in the company's production system. Production handling systems and spare parts logistics. The concept of "Lean production". The concept of the management of constraints, supporting production logistics in systems of the MPRII/ERP class. The integrated, computer-aided manufacturing (CIM) system.

Laboratory

Process re-engineering, based on the selected production process.

Metody kształcenia

Conventional lecture.

Laboratory, according to the assumptions of the subject of the course.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
The student has a thoroughly extensive knowledge of the application of mathematical methods, in order to be able to formulate and solve complex tasks, related to Management and Production Engineering.	• K_W01	 aktywność w trakcie zajęć 	WykładLaboratorium
The student has detailed knowledge of selected issues of Mechanical Engineering, as broadly understood and associated with Production Engineering.	• K_W06	 aktywność w trakcie zajęć 	WykładLaboratorium
The student has knowledge of the life cycle of devices, objects and technical systems, related to Management and Production Engineering	₫ • K_W17	 bieżąca kontrola na zajęciach 	WykładLaboratorium

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
The student can work individually as well as in a team; he/she is also able to select team members for a specific task and assign tasks to the members and manage a small team.	• K_U03	 bieżąca kontrola na zajęciach 	• Laboratorium
The student uses English terminology in his/ her references to management and production engineering.	• K_U10	 bieżąca kontrola na zajęciach 	WykładLaboratorium
The student is able to use accepted analytical, simulational and experimental methods for solving mechanical engineering problems, as well as in the decision-making process, for production planning and control.	• K_U13	 bieżąca kontrola na zajęciach 	WykładLaboratorium
The student is able to integrate technical knowledge with appropriate science disciplines, relevant to Management and Production Engineering viz., production engineering, the engineering of materials, the building and use of machines, automation and robotics, management.	• K_U18	 bieżąca kontrola na zajęciach 	WykładLaboratorium
The student is able to plan and carry out engineering experiments, including measurement of the parameters of technological processes and computer simulations, enabling him / her to interpret the results and draw conclusions.	• K_U22	 bieżąca kontrola na zajęciach 	• Laboratorium
The student is able to prioritise and carry out his/her own tasks as well as the tasks of others	s. • K <u>K04</u>	 bieżąca kontrola na zajęciach 	• Laboratorium

Warunki zaliczenia

Lecture: graded credit. Assessment on the basis of a written test which includes verification of a knowledge of basic issues.

Laboratory: graded credit. Assessment based on a component assessing the skills associated with the implementation of the project.

Final score: the arithmetical average of the scores from each type of class.

Literatura podstawowa

- 1. Muhlemann Alan, Oakland John: Zarządzanie. Produkcja i usługi, PWN Warszawa 1992.
- 2. Fertsch M.: Logistyka produkcji. ILiM, Poznan 2003
- 3. Skowronek Cz., Sarjusz Wolski Z.: Logistyka w przedsiębiorstwie. PWE. Warszawa 2000
- 4. Beier F., Rutkowski K.: Logistyka. SGH. Warszawa 1996

Literatura uzupełniająca

- 1. Coyle J.J.: Zarządzanie logistyczne. PWE, Warszaw, 2002.
- 2. Durlik I.: Inżynieria zarządzania. Strategia i projektowanie systemów produkcyjnych. Wyd. Placet Warszawa, 1995 (cześć 1), 1996 (cześć 2)
- 3. Johnston R. Zarządzanie działalnością operacyjną. Analiza przypadków. PWN, Warszawa, 2002.
- 4. Krawczyk S. Zarządzanie procesami logistycznymi. PWE, Warszawa 2001.
- 5. Laskowska A. Konkurowanie czasem- Strategiczna Broń Przedsiębiorstwa. Difin, Warszawa, 2001.
- 6. Pfohl H-Ch., Systemy logistyczne. Podstawy organizacji i zarządzania. Biblioteka Logistyka, Poznań, 1998.
- 7. Womack J,P., Jones D.T.: Odchudzanie firm. CIM, Warszawa, 2001.

Uwagi

Zmodyfikowane przez dr inż. Tomasz Belica (ostatnia modyfikacja: 12-04-2023 23:05)

Wygenerowano automatycznie z systemu SylabUZ