Engineering Graphics 3D - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Engineering Graphics 3D
Kod przedmiotu	06.9-WM-MaPE-P-EngGraph3D-23
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Management and Production Engineering
Profil	ogólnoakademicki
Rodzaj studiów	pierwszego stopnia z tyt. inżyniera
Semestr rozpoczęcia	semestr zimowy 2023/2024

Informacje o przedmiocie

Semestr	3
Liczba punktów ECTS do zdobycia	2
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• dr inż. Julian Jakubowski, prof. UZ

Formy zajęć

r onny zajęo					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Laboratorium	30	2	-	-	Zaliczenie na
					ocenę

Cel przedmiotu

The aim of the course is to familiarize the student with the techniques of modeling 3D objects in a selected CAD system (AutoCAD, INVENTOR, SolidWorsk or CATIA), indicate the possibilities resulting from the use of specific CAD systems and acquire practical modeling skills in the selected system.

Wymagania wstępne

Technical drawing, 2D engineering graphics

Zakres tematyczny

L1- Introduction to CAD systems, overview and characterization of selected CAD systems;

L2 - discussion of the possibility of obtaining student versions of selected programs; discussion of the working environment in the selected system; design creation, viewer, tool palettes, 2D sketches, and constraints

- L3 basics of 3D part modeling
- L4 structural elements, 3D part editing
- L5 advanced 3D part modeling features
- L6 Modeling of assemblies, constraints in assemblies, insertion of executed elements,
- L7 use of libraries of standard elements
- L8 Motion analysis, moving constraints, constraint animation,
- L9 Assembly presentation, exploding drawings, video recording
- L10 2D documentation of parts, plans, cross-sections,
- L11 Describing 2D drawings, dimensions, descriptions, title blocks,
- L12 2D assembly documentation, part numbering, summary tables
- L13 Modeling of sheet metal elements
- L14 Use of web libraries in design
- L15 Materials; rendering, neutral and standard formats for recording and exchanging data.

Metody kształcenia

Classes carried out in a computer laboratory. During the classes, the lecturer discusses individual issues using a video projector, while the student performs exercises independently. Within a given subject, individual student work is also envisaged at home (using the student version of the selected CAD system) or computer laboratory (outside didactic hours), in order to consolidate the material.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
The student has basic knowledge of the use of CAD systems in engineering design	• K_W09	 obserwacje i ocena umiejętności praktycznych studenta 	• Laboratorium
He has knowledge of computer-aided engineering systems in the field of mechanical engineering and work in the field of Production Management	• K_W33	 bieżąca kontrola na zajęciach obserwacje i ocena umiejętności praktycznych studenta 	• Laboratorium
The student is able to use the CAD systems learned to communicate in the professional and other environments	• K_U08	 obserwacje i ocena umiejętności praktycznych studenta 	• Laboratorium
The student is able to use the CAD systems learned to communicate in the professional and other environments	• K_U11	 obserwacje i ocena umiejętności praktycznych studenta praca kontrolna 	• Laboratorium
The student is able – according to the given specification – to draw a simple component (technical system subassembly) using computer-aided design methods	• K_U27	 obserwacje i ocena umiejętności praktycznych studenta praca kontrolna 	• Laboratorium

Warunki zaliczenia

The condition for passing is the correct solution of tasks consisting in drawing given objects, during the implementation of which the student must demonstrate knowledge enabling the operation and use of a specific CAD system. During the final presentation of all the tasks solved by him, the student demonstrates the ability to use information and communication techniques and communicate using them.

Literatura podstawowa

- 1. Rajashekar Patil Computer Aided Engineering Graphics: Technical University New Age International Pvt Ltd Publishers, 2018.
- 2. Alan J. Kalameja AutoCAD 2020 Tutor for Engineering Graphics. Autodesk Press 2020.
- 3. Mark R. Stevens, J. Ross Beveridge Integrating Graphics and Vision for Object Recognition The Springer International Series in Engineering and Computer Science 589, 2001.

Literatura uzupełniająca

1. Aleksandr Yurievich Brailov Engineering Graphics: Theoretical Foundations of Engineering Geometry for Design, Springer International Publishing, 2016.

Uwagi

Zmodyfikowane przez dr inż. Julian Jakubowski, prof. UZ (ostatnia modyfikacja: 27-04-2023 10:36)

Wygenerowano automatycznie z systemu SylabUZ