Computer Aided Production Engineering - opis przedmiotu

Informacje ogólne		
Nazwa przedmiotu	Computer Aided Production Engineering	
Kod przedmiotu	06.9-WM-MaPE-QE-P-CAPE- 23	
Wydział	Wydział Nauk Inżynieryjno-Technicznych	
Kierunek	Management and Production Engineering	
Profil	ogólnoakademicki	
Rodzaj studiów	pierwszego stopnia z tyt. inżyniera	
Semestr rozpoczęcia	semestr zimowy 2023/2024	

Informacje o przedmiocie	
informacje o przedmiocie	
Semestr	7
Liczba punktów ECTS do zdobycia	5
Występuje w specjalnościach	Quality Engineering
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	doc. dr inż. Julian Jakubowski

Formy z	ajęć					
Forma zaje	Forma zajęć Liczba godzin w semestrze Liczba godzin w tygodniu Liczba godzin w semestrze Liczba godzin w tygodniu Forma zal					
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)		
Wykład	15	1	-	-	Zaliczenie na ocenę	
Projekt	60	4	-	-	Zaliczenie na ocenę	

Cel przedmiotu

Mastering knowledge and skills in the field of: presenting the product as a 3D model with the possibility of choosing a solid, surface or hybrid design method, the student will analyze and select Cax tools for a specific task, in addition, he will be able to design technological processes using CAM systems.

Wymagania wstępne

Basic knowledge in the field of: information technologies, production processes and techniques, concurrent engineering, basics of engineering design, materials science.

Zakres tematyczny

Lecture:

- 1. Information technology in the computer-integrated product development lifecycle.
- 2. Selected technical, organizational and functional aspects of the implementation of computer techniques in the enterprise.
- 3. Technika projektowania odwrotnego, rapid tooling i rapid prototyping. Druk 3D
- 4. Selected elements of the Catia system: sketchbook, types of constraints,
- 5. Solid modeling methods
- 6. Surface Modeling
- 7. Assembly of assemblies
- 8. Virtualization of manufacturing. The role of 3D models in product and process development. Current trends in product development in manufacturing enterprises.

Project

P1-P12: Selected modules of the Catia system. Familiarizing the student with the sketchbook module. Familiarizing the student with solid and surface modeling modules

P13:P20: Design of selected machine components

P21-P29 Actuator design. Virtual modeling of selected machine elements in the Catia system using learned 3D design modules. Project using virtual product assembly techniques, simulation of product operation and elements of virtual production. Presentation of stages and analyses in the shape system, material, manufacturing method for a given design issue.

P-30: Presentation and evaluation of solutions used during the implementation of processes. Analysis of selected and used tools during the implementation of a given project task.

Metody kształcenia

Conventional lecture with multimedia aids,

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
He has structured, theoretically based knowledge in the field of calculations of physical	• K_W03	 bieżąca kontrola na zajęciach 	 Wykłac
parameters of models in CAx systems.		 kolokwium 	Projekt
Knows basic IT techniques and tools, including networking in solving engineering tasks	• K_W07	aktywność w trakcie zajęć	• Wykłac
related to Management and Production Engineering.		 kolokwium 	Projekt
Can work individually and in a team, and skillfully manage the work of a team	• K_U03	obserwacje i ocena umiejętności	• Wykłac
		praktycznych studenta	Projekt
s able to prepare, document and develop issues for a given technical problem using	• K_U05	• przygotowanie projektu	Wykłac
other fields of science, i.e. production engineering, materials engineering, construction			Projekt
and operation of machines, mechanics, automation and robotics, management.			
Can select and apply appropriate computer applications for calculations, simulations,	• K_U11	 bieżąca kontrola na zajęciach 	Wykłac
design and verification.		 obserwacje i ocena umiejętności 	• Projekt
		praktycznych studenta	
		projekt	
s able to interact and work in a group, taking on different roles in it.	• K_K03	• obserwacja i ocena aktywności	Wykłac
		na zajęciach	Projekt
Can properly define priorities for the implementation of the task defined by himself and	• K_K04	obserwacje i ocena umiejętności	• Wykłac
others		praktycznych studenta	Projekt
		 przygotowanie projektu 	

Warunki zaliczenia

Lecture: grade colloquium

Assessment issued on the basis of a written colloquium including verification of knowledge of basic issues.

Project: credit for assessment

Assessment determined on the basis of the component assessing skills related to the implementation of project tasks, its defense and preparation of project documentation and component for the "defense" by the student of the report on the implementation of the project.

Credit from the subject: weighted average:

Lecture 0.5 and Project 0.5

Literatura podstawowa

- 1. Michaud Michel Catia core Tools: Computer Aided Three-Dimensional Interactive Application. The McGraw-Hill Companies Inc. 2012.
- 2. Jonathan Weaver, Nader Zamani CATIA V5 Tutorials Mechanism Design & Animation Release 21. Publisher: SDC Publications, 2012.
- 3.
- 4. Jaecheol Koh CATIA V5 FEA Release 21: A Step by Step Guide Publisher: Createspace Independent Publishing Platform, 2012

Literatura uzupełniająca

CATIA Fundamentals Student Guide.

CATIA V5-6 R2015 Basics Part II: Part Modeling by Tutorial Books

Uwagi

Zmodyfikowane przez dr inż. Julian Jakubowski, prof. UZ (ostatnia modyfikacja: 27-04-2023 19:28)

Wygenerowano automatycznie z systemu SylabUZ