SylabUZ
Nazwa przedmiotu | Quantum mechanics foundations |
Kod przedmiotu | 13.2-WF-FizP-QMF-S17 |
Wydział | Wydział Nauk Ścisłych i Przyrodniczych |
Kierunek | WFiA - oferta ERASMUS |
Profil | - |
Rodzaj studiów | Program Erasmus |
Semestr rozpoczęcia | semestr zimowy 2024/2025 |
Semestr | 1 |
Liczba punktów ECTS do zdobycia | 6 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 30 | 2 | - | - | Egzamin |
Ćwiczenia | 30 | 2 | - | - | Zaliczenie na ocenę |
Introducing students to the historical development and basic concepts of quantum physics. In particular, to the interpretation of quantum phenomena and mathematical foundations of the description of these phenomena.
Assumed background:
Physics: Wave Mechanics, Electromagnetism and Optics.
Mathematics: Vector algebra, vector calculus, series and limits, partial differentiation, multiple integrals, first- and second-order differential equations, Fourier series, matrix algebra, diagonalisation of matrices, eigenvectors and eigenvalues, coordinate transformations, special functions.
Topics covered in Lectures:
1. Wave nature of light.
2. Experiments demonstrating failing of the wave nature of light: spectrum of X radiation, photoelectric effect, Compton scattering, discrete atomic spectra, black body radiation.
3. Planck's quantum hypothesis.
4. The Bohr model of the hydrogen atom and its difficulties.
5. Duality of light and matter.
6. Quantum wave mechanics, meaning of wave function and its interpretation.
7. Superposition principle. Wave packets and the Heisenberg uncertainty relation.
8. Operator representation of physical quantities. Non-relativistic Schrodinger equation.
9. Applications of the Schrodinger's equation: potential wells, potential barrier, tunneling effect.
10. Linear operators and their algebra. Eigenvalues and eigenvectors. Dirac notation.
11. Matrix representation of wave function and operators. Diagonalization of matrices.
12. Quantum harmonic oscillator.
13. Quantum wave mechanics model of hydrogen atom.
Tutorials: Solving problems and exercises on topics covered in the lectures: For example, problems and exercises on elements of a theory of the linear operators, uncertainty principle, the square potential barrier, potential well, eigenvalues and eigenvectors of operators. Matrix representation and diagonalization of matrices.
Teaching and Learning Methods:
Two hours per week are scheduled for lectures and two hours for tutorials.
Lectures will cover the formal course content.
Typed lecture notes and tutorial problems will be provided.
In the problem solving tutorials, students will be expected to discuss the tutorial problems provided.
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Course examination:
Lectures: Final written exam. Correct answer to at least 2/3 of questions.
Tutorial: Activity during the tutorial hours demonstrating the ability of solving tutorial problems and a positive grade of the final test.
Before taking the final lecture examination the student needs to obtain passing grade of the tutorials.
The final grade: the arithmetic average of the tutorial and lecture examination grades.
Main textbooks:
1. Z Ficek, Quantum Physics for Beginners (Pan Stanford, Singapore, 2016).
2. E. Merzbacher, Quantum Mechanics, (Wiley, New York, 1998).
Important reference books are:
1. R.A. Serway, C.J. Moses, and C.A. Moyer, Modern Physics, (Saunders, New York, 1989).
2. K. Krane, Modern Physics, (Wiley, New York, 1996).
Zmodyfikowane przez dr Marcin Kośmider (ostatnia modyfikacja: 28-04-2024 14:56)