SylabUZ
Nazwa przedmiotu | Astronomical instruments |
Kod przedmiotu | 13.7-WF-FizP-AI-S17 |
Wydział | Wydział Nauk Ścisłych i Przyrodniczych |
Kierunek | WFiA - oferta ERASMUS |
Profil | - |
Rodzaj studiów | Program Erasmus |
Semestr rozpoczęcia | semestr zimowy 2024/2025 |
Semestr | 2 |
Liczba punktów ECTS do zdobycia | 4 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 30 | 2 | - | - | Egzamin |
Ćwiczenia | 30 | 2 | - | - | Zaliczenie na ocenę |
The necessary concepts of optics and physics of electromagnetic wave needed to understand the principles of operation and construction of optical telescopes. Description of the construction of optical receivers used in astronomy. Construction and operation of the basic types of optical telescopes. Introduction of the concepts of electrodynamics and the physics of electromagnetic waves, that are necessary for understanding of the development of radio-astronomical telescopes and receivers. Description of basic receiver types used in radio astronomy. Description of basic radio-telescope types.
Knowledge of basic physical concepts of optics, electrodynamics and wave physics.
- Astronomical coordinate systems, siderial time, time-keeping, stellar brightness scale
- Optical telescopes, basic tesescope parameters
- Astronomical light detectors: photometers, CCD cameras, polarimeters, spectrographs, optical filter systems.
- The basic aplications of photometry, spectroscopy and polarymetry
- Radio-telescopes, radio wave detectors and receivers
- Interferometry in radioastronomy (VLA, VLBI, LOFAR, SKA)
- Microwave and infrared telescopes (ALMA)
- X-ray and gamma telescopes, including Cherenkov’s telescopes (HESS)
- Cosmic rays: origin and detection
- Detection of astrophysical neutrinos
- Basics of the gravitational wve theory and gravitational wave detectors (VIRGO, LIGO).
Classic lecture; computational exercises and research project preparation in the class
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture: Oral exam, passing condition – positive grade.
Class: written test – solving computational exercises (50% of the grade) and the research project (50%) of the grade
Before taking the examination the student needs to obtain passing grade from the class
Final grade: average of the exam grade and the class grade.
[1] F. Shu, Galaktyki, gwiazdy, życie, Proszyński i S_ka, 2003.
[2] M. Kubiak, Gwiazdy i materia międzygwiazdowa, PWN, 1994.
[3] J. M. Kreiner, Astronomia z astrofizyką, PWN, 1988.
[4] A. Branicki, Obserwacje i pomiary astronomiczne, WUW, 2006.
[5] R. Taylor, Wstęp do analizy błędu pomiarowego, PWN, 1999.
[6] K. Rohlfs, T. L. Wilson, Tools of Radio Astronomy, Springer, 2006
[1] B. D. Warner, Lightcurve Photometry and Analysis, Springer 2006.
[2] S. B. Howell, Handbook of CCD astronomy, Cambridge Uni. Press, 2006.
[3] E. Budding i O. Demircan, Introduction to astronomical photometry, Cambridge Uni. Press, 2007.
[4] J. D. Krauss, Radio Astronomy, Cygnus-Quasar Books, 1986.
[5] K. Grupen, I. Buvat (eds), Handbook of particle detection and imaging, Springer, 2012.
[6] I. S. Glass, Handbook of infrared astronomy, Cambridge Univ. Press, 1999.
[7] J. D. E. Creighton, W. G. Anderson, Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment and Data Analysis, Wiley, 2011.
Zmodyfikowane przez dr Marcin Kośmider (ostatnia modyfikacja: 30-04-2024 15:35)