SylabUZ
Nazwa przedmiotu | Mathematical Analysis 3 |
Kod przedmiotu | 11.1-WK-MATP-MA3-S22 |
Wydział | Wydział Nauk Ścisłych i Przyrodniczych |
Kierunek | WMIiE - oferta ERASMUS |
Profil | - |
Rodzaj studiów | Program Erasmus |
Semestr rozpoczęcia | semestr zimowy 2024/2025 |
Semestr | 1 |
Liczba punktów ECTS do zdobycia | 6 |
Typ przedmiotu | obieralny |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 45 | 3 | - | - | Egzamin |
Ćwiczenia | 45 | 3 | - | - | Zaliczenie na ocenę |
Acquainting students with differential calculus of functions of several variables and introduction to Fourier analysis.
Mathematical Analysis 1 and 2; Linear Algebra 1 and 2; Logic and Set Theory
Lecture
I. Applications of integrals of functions of two and three variables
Double integrals in polar coordinates (3 hours); Application of the integral: area, center of mass, moments of inertia, volume (3 hours)
II. Fourier series
Trigonometric series (1 hour); Fourier series – representation and properties (2h); Convergence of Fourier series (2h); Fourier series summability. Fejér's theorem (1 hour)
III. Differentiable functions of several variables
Directional and partial derivatives. Jacobi matrix and gradient (3 hours); Differentiability and differential (7 hours); Geometric interpretation of differentiability. Tangent lines, normal lines, and tangent planes (3 hours); Regular mappings and diffeomorphisms (2 hours); Implicit function theorem (4h); Extrema (5 hours); Conditional extrema (4 hours); Characterization of convex functions (1 hour); Regular mappings and diffeomorphisms between spaces of different dimensions (4 hours)
Classes
I. Lebesgue integral
The change of variables theorem for the Lebesgue integral (3h); Fubini's theorem in tasks (2h)
II. Applications of integrals of functions of two and three variables.
Application of the integral: area, center of mass, moments of inertia, volume (4 hours)
III. Fourier series.
Determining the expansion of a function into Fourier series (3h). Convergence of Fourier series (3h).
Colloquium (2 hours)
IV. Differential calculus of multivariable functions
Directional and partial derivatives and gradient examples (5 hours); Finding tangents and normals (2 hours); Regular mappings and diffeomorphisms (3 hours); Implicit function theorem (3 hours); Local extrema of functions (4 hour); Conditional and global extrema (5 hours); Regularity and diffeomorphism of mappings between spaces of different dimensions (4 hours)
Colloquium (2 hours)
Traditional lecture; exercises in which students solve problems and discuss, as well as prepare biographies of mathematicians whose names appear at the lecture; group work completed with a written study; work with a book and with the help of the Internet. If necessary (determined by the order of the Rector of the University of Zielona Góra), classes can be in online form.
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
The grade for the subject is the arithmetic mean of the classes grade and the exam grade. The necessary condition for taking the exam is a positive grade from the classes. The necessary condition for passing the course is a positive grade from the exam.
Zmodyfikowane przez dr Dorota Głazowska (ostatnia modyfikacja: 18-04-2024 13:08)