SylabUZ

Wygeneruj PDF dla tej strony

Biomechatronika - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Biomechatronika
Kod przedmiotu 06.9-WM-IB-P-47_15gen
Wydział Wydział Mechaniczny
Kierunek Inżynieria biomedyczna
Profil ogólnoakademicki
Rodzaj studiów pierwszego stopnia z tyt. inżyniera
Semestr rozpoczęcia semestr zimowy 2016/2017
Informacje o przedmiocie
Semestr 5
Liczba punktów ECTS do zdobycia 4
Typ przedmiotu obowiązkowy
Język nauczania polski
Sylabus opracował
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Projekt 15 1 9 0,6 Zaliczenie na ocenę
Laboratorium 15 1 9 0,6 Zaliczenie na ocenę
Wykład 15 1 9 0,6 Zaliczenie na ocenę

Cel przedmiotu

Celem kursu jest zdobycie przez studenta umiejętności praktycznych w zakresie projektowania układów mechatronicznych w nawiązaniu do funkcjonowania układów biomechanicznych w tym umiejętności praktycznego wykorzystania wiedzy nt. funkcjonowania podstawowych elementów układów sterowania i kontroli w inteligentnych strukturach robotycznych. Jednym z efektów kształcenia podczas kursu jest zdobycie praktycznych umiejętności projektowania biomechatronicznego oraz zapoznanie się od strony praktycznej z procesem prototypowania i weryfikacji założeń projektowych na rzeczywistym modelu. Efektem kształcenia jest przyswojenie podstawowej wiedzy praktycznej z zakresu elektroniki, mechaniki, biomechaniki i informatyki oraz zasad projektowania i technologii realizacji nowoczesnych systemów biomechatronicznych. Kształtowana jest umiejętność projektowania mechatronicznego w tym opracowania specyfikacji, doboru elementów spełniających wymagania projektowe, analizy niezawodności i bezpieczeństwa projektowanego układu w kontekście współpracy z człowiekiem, weryfikacji rozwiązania na drodze symulacji, jak i optymalizacji rozwiązania konstrukcyjnego pod względem kosztów. Zaprojektowana, wykonana oraz udokumentowana konstrukcja podlega analizie i ocenie pod kątem zastosowanych metod, jej mocnych i słabych stron w kontekście trwałości i funkcjonalności, a także jakości wykonania.

Wymagania wstępne

Podstawy elektrotechniki i elektroniki, mechaniki i wytrzymałości materiałów, biomechaniki, automatyki, umiejętność wspomaganego komputerowo projektowania inżynierskiego

Zakres tematyczny

Wykład: Podstawowe definicje i określenia z zakresu mechatroniki. Definicja mechatroniki. Rozwój i cele mechatroniki. Urządzenia mechatroniczne i biomechatroniczne. Urządzenia powszechnego użytku. Budowa modułowa urządzeń mechatronicznych. Systemy mechatroniczne. Pojęcie systemu, pojęcie systemu technicznego. Budowa układów mechatronicznych. Ocena niezawodności i bezpieczeństwa układów biomechatronicznych. Sensory. Akwizycja biosygnałów i ich wykorzystanie do sterowania układów mechatronicznych. Elementy wykonawcze. Procesy sterowania. Robotyka. Funkcjonalny opis układów mechatronicznych. Integracja podukładów mechanicznych, hydraulicznych, elektrycznych i informatycznych w złożone systemy mechatroniczne. Sieci AS-I (actuator - sensor - interface). Zagadnienia projektowania mechatronicznego. Interdyscyplinarność w projektowaniu mechatronicznym. Integracja elementów mechanicznych, elektrycznych, elektronicznych, układów sterowania i oprogramowania w projektowaniu mechatronicznym. Sposoby realizacji projektów mechatronicznych i biomechatronicznych. Technologie realizacji projektów mechatronicznych. Wirtualne i szybkie prototypowanie w projektowaniu mechatronicznym. Przykłady realizacji projektów mechatronicznych. Zastosowanie systemów CAD/CAM w projektowaniu mechatronicznym. Zastosowanie druku 3D do projektowania custom design projektów biomechatronicznych.

 

Laboratorium: Ćwiczenia wykonane przy pomocy stanowisk laboratoryjnych z zakresu: akwizycji i wykorzystania danych z czujników temperatury, czujników odległości, czujników natężenia światła, mikrofonów; sterowania oraz wyznaczania parametrów silnika krokowego, silnika prądu stałego oraz serwomechanizmu; akwizycji i analizy biosygnałów, m.in. sygnałów EMG / EKG.

Projekt: Projekt wybranego układu biomechatronicznego na bazie nowoczesnych platform mikroprocesorowych z rodzin AVR/MSP430/STM32F. Projekt wykonywany zgodnie z harmonogramem zawierającym etap projektowania, przygotowania dokumentacji, wykonania modelu oraz uruchomienia stanowiska. Uruchomienie układu wymaga zaprogramowania sterownika

Metody kształcenia

Wykład konwencjonalny, praca z literaturą źródłową, praca w grupach nad realizacją  projektu z podziałem na zadania.  Praktyczne wykonanie działającego układu mechatronicznego na podstawie przygotowanego projektu.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

Wykład: Warunkiem zaliczenia jest uzyskanie pozytywnej oceny ze sprawdzianu przeprowadzonego w formie testu weryfikującego wiedzę stanowiącą tematykę wykładu.

Laboratorium: Warunkiem zaliczenia jest uzyskanie pozytywnych ocen z aplikacji wykonanych w czasie zajęć oraz z raportów wykonanych na podstawie wykonanych ćwiczeń laboratoryjnych.

Projekt: Warunkiem zaliczenia jest uzyskanie pozytywnej oceny sumatywnej na którą składają się: ocena formatywna dokonywana na podstawie oceny stopnia realizacji poszczególnych etapów projektu, oceny za projekt dokonywane na podstawie KARTY ZALICZENIA PROJEKTU opisującej stopień realizacji założeń, funkcjonalności, przygotowania dokumentacji, oprogramowania i działania układu a także prezentacji wyników projektu i odpowiedzi na pytania związane z tematyką rozwiązywanego problemu.

Ocena końcowa jest określona na podstawie średniej arytmetycznej z wykładu, projektu i laboratorium.

Literatura podstawowa

  1. Cook D.: Budowa robotów dla początkujących, Helion 2012
  2. Francuz R.: Język C dla mikrokontrolerów AVR. Od podstaw do zaawansowanych aplikacji,Helion 2011
  3. Paprocki K.: Mikrokontrolery STM32 w praktyce, Helion 2009
  4. Hajduk Z.: Mikrokontrolery w systemach zdalnego sterowania. Wydawnictwo BTC, Warszawa,2005.
  5. Heimann B., Gerth W., Popp K.: Mechatronika. Komponenty, metody, przykłady, PWN,Warszawa, 2001.
  6. Uhl T. (pod red.): Wybrane problemy projektowania mechatronicznego. KRiDM AGH, Kraków,1999.
  7. Pełka R.: Mikrokontrolery. Architektura, programowanie, zastosowania, WKŁ, Warszawa, 1999.
  8. Gawrysiak M.: Mechatronika i projektowanie mechatroniczne. Politechnika Białostocka. Rozprawy Naukowe nr 44. Białystok, 1997.
  9. Juran J.M., Gryna F.M.(Jr.): Quality Planning and Analysis. From Product Development through Use. Second Edition. McGraw-Hill, Inc. 1980
  10. Oleksiuk W. (pod red.): Konstrukcja przyrządów i urządzeń precyzyjnych, WNT, Warszawa, 1996.
  11. Oakland J.S.: Total Quality Management, Butterworth-Heinemann Ltd., Oxford, 1992

Literatura uzupełniająca

  1. Petko M.: Wybrane techniki projektowania mechatronicznego, UWND AGH, Kraków, 2005.
  2. Baranowski R.: Mikrokontrolery AVR ATmega w praktyce, Wydawnictwo BTC, Warszawa, 2005.
  3. Giurgiutiu V., Lyshevski S. E.: Micromechatronics, CRC Press, Boca Raton, FL, 2003.
  4. Auslander K.L.: Mechatronics. Kluver Academic Press, New York, 1998.
  5. 181
  6. Mrozek B., Mrozek Z.: Matlab uniwersalne środowisko do obliczeń naukowo-technicznych.CCATIE, Kraków, 1995.
  7. Noty katalogowe firm produkujących części elektroniczne, czujniki, napędy i inne elementy systemów mechatronicznych dostępne w Internecie.

Uwagi


Zmodyfikowane przez dr hab. inż. Tomasz Klekiel, prof. UZ (ostatnia modyfikacja: 14-09-2016 13:11)