Event-driven systems - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Event-driven systems
Kod przedmiotu	11.9-WE-AutD-E-dS-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka / Komputerowe Systemy Automatyki
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus
Semestr rozpoczęcia	semestr zimowy 2017/2018

Informacje o przedmiocie

informacje o przedmiocie	
Semestr	2
Liczba punktów ECTS do zdobycia	3
Typ przedmiotu	obowiązkowy
Język nauczania	angielski
Sylabus opracował	• dr hab. inż. Andrei Karatkevich, prof. UZ

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Egzamin
Laboratorium	15	1	-	-	Zaliczenie na
					ocenę

Cel przedmiotu

- To provide knowledge on the ways and methods of formal specification of the event-driven systems
- To maintain the theoretcal basis necessary for understanging the ways of design and verification odf the event-driven systems

Wymagania wstępne

Discrete process control

Zakres tematyczny

Informal introduction to the event-driven systems.

Mathematical foundations. Elements of the automata theory necessary for formal specification of an event-driven systems. Finite Stste Machine as a model of an event-driven systems. Deterministic and undeterministic automata.

Introduction to the temporal logic. Structore of the time, linear and branchung time. Operators and expressions of the temporal logic. Logic LTL, CTL, CTL*. Intuitive examples of specification of the simple event-driven systems using the temporal logic.

Reactive event-driven systems. General concept of HCFSM. Synchronous and asynchronous implementation of the event-driven systems.

Formal verification of the event-driven systems at the level of specification. System analysis by mean of studying of the specification which provided using LTL or CTL. "Safeness" and "liveness" propertries. "Liveness" and "safeness" properties. Counter-examples. Methods of model checking. Using a model checker (NuSMV is used as an example of such tool.)

Metody kształcenia

Lecture: conventional lecture Laboratory: laboratory exercises

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Applies the appropriate mathematical tools in design of the event-		• egzamin - ustny, opisowy, testowy i inne	 Wykład
driven systems		• sprawdzian	 Laboratorium
Is able to prepare a formal specification of a control device		• egzamin - ustny, opisowy, testowy i inne	• Wykład
		• sprawdzian	Laboratorium
Knows the basic concepts of automata theory necessary to desing the simple control devices		• egzamin - ustny, opisowy, testowy i inne	• Wykład

Opis efektu

Symbole efektów Metody weryfikacji

Forma zajęć

Laboratorium

Verifies a model of an event-driven control system by means of a model checker

• sprawdzian

• wykonanie sprawozdań laboratoryjnych

Warunki zaliczenia

Lecture: The condition of pass is to obtain a positive assessment from the written examination. Laboratory: a conditional of pass is to obtain positive grades from all laboratory exercises that are expected to be performed within the laboratory program.

Components of the final grade: lecture: 50% + laboratory: 50%

Literatura podstawowa

- 1. Baier Ch., Katoen J.-P.: Principles of Model Checking, MIT Press, 2008.
- 2. Cavada R., Cimatti A., Keighren G., Olivetti E., Pistore M., Roveri M.: NuSMV 2.5 Tutorial (http://nusmv.fbk.eu/NuSMV/tutorial/index.html).
- 3. Clarke E. M., Jr., Grumnerg O., Peled D. A.: Model Checking, MIT Press, 1999.
- 4. Emerson E. A., Temporal and modal logic, Handbook of Theoretical Computer Science, Chapter 16, MIT Press, 1990.
- 5. Grobelna I.: Model Verification with NuSMV, Oficyna Wydawnicza Uniwersytetu Zielonogórskiego, Zielona Góra, 2011. (in Polish).
- 6. Pecol J.: Embedded Systems. A Contemporary Design Tool, Willey, 2008.

Literatura uzupełniająca

- 1. Girault G., Volk R.: Petri Nets for Systems Engineering. A Guide to Modeling, Verification and Applications, Springer Verlag, Berlin, 2003.
- 2. Grumberg O., Veith H. (Eds.): 25 Years of Model Checking History, Achievements, Perspectives. Lecture Notes in Computer Science 5000, Springer, 2008.
- 3. Kropf T., Introduction to Formal Hardware Verification, Springer, Berlin, 1999.
- 4. Øhrstrøm P., Hasle P. F. V.: Temporal logic: from ancient ideas to artificial intelligence, Springer, 1995

Uwagi

Zmodyfikowane przez dr hab. inż. Andrei Karatkevich, prof. UZ (ostatnia modyfikacja: 29-03-2018 16:41)

Wygenerowano automatycznie z systemu SylabUZ