Embedded measurement systems - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Embedded measurement systems
Kod przedmiotu	06.0-WE-ELEKTD-EmbMeasSys-Ee
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Elektrotechnika
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus drugiego stopnia
Semestr rozpoczęcia	semestr zimowy 2017/2018

Informacje o przedmiocie	
Semestr	2
Liczba punktów ECTS do zdobycia	6
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	• dr hab. inż. Janusz Kaczmarek, prof. UZ

Formy zajęć						
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia	
Wykład	30	2		-	Zaliczenie na ocenę	
Laboratorium	30	2	-	-	Zaliczenie na ocenę	
Projekt	15	1	-	-	Zaliczenie na ocenę	

Cel przedmiotu

Skills and competences in the field of designing the hardware and the software of embedded systems with emphasis on measurement equipment.

Wymagania wstępne

- Electrical metrology
- Principles of electronics
- Fundamentals of microprocessor technology
- Programming languages

Zakres tematyczny

Fundamentals terms and definition. Architecture microprocessor measurement devices. Methodology of designing embedded systems: division of project tasks on software and hardware, creating technical documentation. Some elements of microprocessor technique. Microprocessors and microcontrollers. Microcontroller architecture.

Overview of some microcontroller families. Architecture of DSP floating-point processors. Problems of power-saving in embedded systems. Microprocessor power-saving modes. Interfacing of analog- to-digital and digital- to-analog converters.

Introduction to programming for embedded systems. Integrated programming environments. Low-level and high-level programming languages. Hybrid programming technique. Methods of code optimization.

Applying real-time operating system (RTOS) to design the software for embedded systems with low resources. Basic terms. Principles and aims of applying RTOS systems. Mechanisms of RTOS kernel. Services of peripheral devices. Scalability of RTOS. Examples of commercial and non-commercial RTOS. Advantages of applying RTOS in measurement equipment.

Processing of measurement data in digital systems. Arithmetic and numerical representations for measurement data. Effective fixed-point arithmetic on fractional numbers. Transformations of numbers and conversions of codes. Scaling and calibrating. Display of measurement results.

Implementation of some measurement and control algorithms. Software control procedures for analog-to-digital and digital-to-analog converters. Acquisition and generation signals using interrupts. Sampling methods of RMS and frequency measurement. Real-time signals processing with DSP processors.

Metody kształcenia

Lecture: conventional lecture Laboratory: laboratory exercises, group work Project: project method, discussions and presentations

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu

Symbole efektów Metody weryfikacji

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Student can design microprocessor measuring devices	• projekt	 Projekt
Student can program microprocessor measuring devices in low- and high-	 bieżąca kontrola na zajęciach 	 Wykład
level languages and carry out the startup process.	 test z pytaniami zamkniętymi i otwartymi 	• Laboratorium
	 wykonanie sprawozdań laborat 	oryjnych
Student can realize in a team the tasks related to microprocessor	 bieżąca kontrola na zajęciach 	• Laboratorium
programming of measurement devices	 wykonanie sprawozdań laborat 	oryjnych
Student knows specifics of embedded systems including microprocessor	• test z pytaniami zamkniętymi i	• Wykład
architecture of measurement devices	otwartymi	

Warunki zaliczenia

Lecture - the passing condition is to obtain a positive mark from the final test.

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Project - the project documentation and oral presentation

Calculation of the final grade: lecture 35% + laboratory 35% + project 30%

Literatura podstawowa

- 1. Barney G.C.: Intelligent Instrumentation. Microprocessor Applications in Measurement and Control , Prentice Hall, 1988
- 2. Tumański S.: Measuring Technique, WNT, Warszawa, 2007 (n Polish)
- 3. Labrosse J.J.: Embedded System Building Blocks, CMP Books, 2000
- 4. Dąbrowski A.: Processing of signals with DSP processors, Wydawnictwo Politechniki Poznańskiej, Poznań, 1998 (in Polish)

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. inż. Radosław Kłosiński, prof. UZ (ostatnia modyfikacja: 02-05-2017 14:31)

Wygenerowano automatycznie z systemu SylabUZ