Advanced control systems and computer networks - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Advanced control systems and computer networks
Kod przedmiotu	06.2-WE-ELEKTD-ACSandCN- SPiE-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Elektrotechnika
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus drugiego stopnia
Semestr rozpoczęcia	semestr zimowy 2017/2018

Informacje o przedmiocie	
Semestr	2
Liczba punktów ECTS do zdobycia	6
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	• prof. dr hab. inż. Igor Korotyeyev

Formy zajęć	Formy zajęć						
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia		
Wykład	30	2	-	-	Zaliczenie na ocenę		
Laboratorium	15	1	-	-	Zaliczenie na ocenę		
Projekt	15	1	-	-	Zaliczenie na ocenę		

Cel przedmiotu

- familiarize students with control techniques of bases power converters
- familiarize students with bases of control with help of neural networks
- shaping basic skills for selection and adjust of parameters under using of standard control strategy of power converters
- formation among the students understanding of control problems, monitoring and diagnostic of distributed systems

Wymagania wstępne

Selected issues of circuit theory I and II

Zakres tematyczny

Voltage regulation techniques. Method of identification of basic harmonic. Integrated methods. Momentary power theory p-q – bases. Momentary power theory in orthogonal coordinates. Control techniques of power flow. Variable structure control. Phase space method. Methods of variable structure construction. Idea of generation of induced motions. Conditions of existence of sliding mode.

Neural networks. Unidirectional networks. Recurrent networks. Teaching neural networks methods. Backpropagation algorithm. Neural networks in adaptive system. Neural control system.

Fuzzy control. Fuzzy control models. Fuzzy control in industry. Systems based on knowledge about processes. Controller based on knowledge (KBC). Knowledge presentation in controller KBC. Adaptive control systems. Adaptive mechanism. Operation estimation.

Adaptive control systems for static object. Self-organized regulator. Regulator based on model. Optimal control. Dynamical optimization conception. The principle of maximum. Control at minimum expense. Technical implementation of the optimum control system.

Computer Networks. OSI model. Local computer networks. Equipment and signals of the first layer of the OSI model. Media, connections, and collisions in the first layer of the OSI model. The second layer of the OSI model - the basics. Secondary OSI model technologies. Design and documentation of computer networks. Structural cabling. Addressing on computer networks. Routing and routed protocols. OSI model transport layer. Session layer of the OSI model. Presentation layer of the OSI model. Application layer model OSI.

Metody kształcenia

Lecture, laboratory exercises, project

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can configure communication devices in local and wide area networks	• sprawdzian	 Laboratorium
Can to design electronic systems and systems for a wide variety of applications, including high frequency systems and digital signal processing systems.	• sprawdzian	• Laboratorium
Has detailed knowledge of control and automation basics	• kolokwium	• Wykład
Knows and understands advanced artificial intelligence methods used in the design of electronic systems and systems.	• kolokwium	• Wykład
Understands the need for advanced control strategies for power converters	• sprawdzian	Wykład

Warunki zaliczenia

Lecture - obtaining a positive grade in written exam.

Laboratory – the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.

Calculation of the final grade: lecture 40% + laboratory 30% + project 30%

Literatura podstawowa

- 1. Kevin Gurney. An Introduction to Neural Networks. CRC Press, 2003 234
- 2. Hingorani N., Gyugyi L.: Understanding FACTS. Concepts and Technology of Flexible AC Transmission Systems, IEEE Press, New York, 2000.
- 3. Song Y., Johns A.: Flexible AC Transmission Systems (FACTS), IEE Power and Energy Series 30, TJ International Ltd, Padstow, Cornwall, 1999.

Literatura uzupełniająca

- 1. Jeff Doyle, Jennifer DeHaven Carroll. Routing TCP/IP, Volume 1, 2nd Edition. Cisco Press. 2005
- 2. Vito Amato; Wayne Lewis. Cisco Networking Academy Program: First-Year Companion Guide. Cisco Systems, 2000.

Uwagi

Zmodyfikowane przez dr hab. inż. Radosław Kłosiński, prof. UZ (ostatnia modyfikacja: 27-04-2017 08:36)

Wygenerowano automatycznie z systemu SylabUZ