Energy conversions and alternative power sources - opis przedmiotu

Informacje ogólne

informacje ogoine	
Nazwa przedmiotu	Energy conversions and alternative power sources
Kod przedmiotu	06.2-WE-ELEKTD-ECandAES-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Elektrotechnika
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus drugiego stopnia
Semestr rozpoczęcia	semestr zimowy 2017/2018

Informacje o przedmiocie

Semestr	3
Liczba punktów ECTS do zdobycia	4
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	• prof. dr hab. inż. Grzegorz Benysek

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Zaliczenie na ocenę
Laboratorium	30	2		-	Zaliczenie na ocenę

Cel przedmiotu

To provide fundamental knowledge in subject of energy conversions and renewable energy sources.

Wymagania wstępne

Circuit theory, Fundamentals of electrical power engineering.

Zakres tematyczny

Energy resources and energy demands. Conversion of the thermal energy into mechanical and electrical. Conversion of the wind and water energy. Conversion of the nuclear energy into thermal and electrical energy. Energy conversions and influence onto environment.

Nuclear energy. Nuclear reactor - principle of operation. Advantages and disadvantages of the nuclear power stations.

Wind energy. Wind conditions In Poland and Europe. Wind conversion system. Ecological, scenery and environmental results of the wind installations utilization.

Solar energy. Insolation in Poland. Types and construction of the solar systems. Principle of operation.

Examples of the industrial installations with photovoltaic.

Water energy. Turbine construction. Influence of the large water power stations onto environmental changes. Principles of constructions as well as cooperation of the small water power stations with the energy network.

Geothermal energy. Methods and examples of utilization of the geothermal energy. Geothermal energy resources in Poland. Principle of operation of the heat pumps, heat sources utilized In heat pumps.

Biogas, biomass and waste heat. Fermentation as source of the biogas. Straw and brushwood utilization.

Electrical arrangements In alternative energy sources. Methods of solar energy conversion into electrical energy. Arrangements to cooperation with AC networks. Novel sources of the alternative energies. Electrolysis and hydrogen utilization.

Thermonuclear fusion. Financial aspects of the alternative energy installations.

Metody kształcenia

Lecture, laboratory exercises.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can select installation elements, estimate design cost and investment payback time for alternative energy sources.	 wykonanie sprawozdań laboratoryjnych 	• Laboratorium
Characterizes the sources of renewable energy and energy storage.	• kolokwium	• Wykład
Knows about energy conversion.	 kolokwium 	• Wykład

Opis efektu

Symbole efektów Metody weryfikacji

Knows properties of renewable energy sources and electric energy deposits.

kolokwium

Warunki zaliczenia

Lecture - the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.

Laboratory – the main condition to get a pass is acquiring sufficient marks for all laboratory exercises as scheduled.

Literatura podstawowa

- 1. Klugmann E., Klugmann-Radziemska E.: Alternative energy sources. Photovoltaics power systems, Wydawnictwo Ekonomia i Środowisko, Białystok, 1999. (in Polish)
- 2. Heier S., Waddington R.: Grid integration of wind energy conversion systems, John Wiley & Sons, 2006.
- 3. Luque A.: Handbook of photovoltaic science and engineering, John Wiley & Sons, 2003.
- 4. Lewandowski W.: Ecological friendly renewable energy sources, WNT, Warszawa, 2001. (in Polish)
- 5. Marecki J.: Basic of energy transformations, WNT, Warszawa, 1995. (in Polish).

Literatura uzupełniająca

- 1. O'Hayre R.: Fuel cell fundamentals, John Wiley & Sons, 2006.
- 2. Mielczarski W., Electrical energy market selected technical and economical aspects, ARE & EP-C, Warszawa, 2000 (in Polish)

Uwagi

Zmodyfikowane przez dr hab. inż. Radosław Kłosiński, prof. UZ (ostatnia modyfikacja: 30-04-2017 12:22)

Wygenerowano automatycznie z systemu SylabUZ