Computer graphics - course description

	<u>'</u>
General information	
Course name	Computer graphics
Course ID	11.3-WE-INFP-GrafComp-Er
Faculty	Faculty of Computer Science, Electrical Engineering and Automatics
Field of study	Computer Science
Education profile	academic
Level of studies	Erasmus programme
Beginning semester	winter term 2017/2018

Course information	
Semester	3
ECTS credits to win	5
Course type	obligatory
Teaching language	english
Author of syllabus	• dr inż. Andrzej Czajkowski

Classes forms					
The class form	Hours per semester (full-time)	Hours per week (full-time	e) Hours per semester (part-time)	Hours per week (part-time) Form of assignment
Lecture	30	2	-	-	Credit with grade
Laboratory	30	2	-	-	Credit with grade

Aim of the course

- Familiarize students with different approaches to create 3D computer graphics.
- Introduce modern CGI environments.
- Introduce the concepts of 3D modelling, texturing and animation.

Prerequisites

Scope

- Concepts of 3D graphics vertex, edge and polygon
- Hard Surface and organic modelling.
- Topology of 3D models, loops and rings, subdivision.
- High and low poly modelling optimisation of 3D models, normal map baking.
- UVW mapping mapping coordinates, materials and maps (procedural and raster mapping)
- Key framing and interpolation in 3D animation, hierarchy with inheritance in animation.
- Lightning, shading and shadows in 3D scene classic and physically correct lights. Exposure control.
- Rendering process optimisation and methods

Teaching methods

laboratory classes, lecture

Learning outcomes and methods of theirs verification

Outcome description	Outcome symbols	Methods of verification	The class form
Student is able to texture a complex 3D shape using different		• a final test	 Lecture
UVW uwraping methods		 an observation and evaluation of activities during 	 Laboratory
		the classes	
		 carrying out laboratory reports 	
Student is able to design a complex material for the texturing		• a final test	• Lecture
purpose		 an observation and evaluation of activities during 	 Laboratory
		the classes	
		 carrying out laboratory reports 	
Student knows different approaches to create CGI		• a final test	• Lecture
		 an observation and evaluation of activities during 	 Laboratory
		the classes	
		 carrying out laboratory reports 	

Outcome description	Outcome symbols Methods of verification	The class form
Student can create short animation using key framing and	a final test	 Lecture
different interpolation methods	 an observation and evaluation of activities the classes 	es during • Laboratory
	 carrying out laboratory reports 	
Student is able to use different modelling techniques to	a final test	Lecture
achieve desirable effect	 an observation and evaluation of activitie 	es during • Laboratory
	the classes	
	 carrying out laboratory reports 	

Assignment conditions

Lecture - the passing criterion is a sufficient mark from the final test.

Laboratory - the passing criterion are positive marks for laboratory exercises.

Final mark components = lecture: 50% + laboratory: 50%

Recommended reading

- 1. D. Derakhshani, R. L. Derakhshani, Autodesk 3ds Max 2016 Essentials. Sybex, 2015
- 2. K.L. Murdock, Autodesk 3ds Max 2014 Bible, Willey Press, 2013
- 3. S.J. Gortler, Foundations of 3D Computer Graphics, MIT Press, 2012

Further reading

- 1. M. McCarthy, How to Cheat in 3ds Max 2015: Get Spectacular Results Fast, Focal Press, 2014
- 2. M. Pricken, Creative Advertising: Ideas and Techniques from the World's Best Campaigns, Thames & Hudson, 2008
- 3. Adams E.: Fundamentals of Game Design, 3rd edition, New Riders, 2013

Notes

Modified by dr inż. Andrzej Czajkowski (last modification: 30-04-2018 19:55)

Generated automatically from SylabUZ computer system