Elements of artificial intelligence - opis przedmiotu

Informacje ogólneNazwa przedmiotuElements of artificial intelligenceKod przedmiotu11.4-WE-INFP-EoAI-ErWydziałWydział Nauk Inżynieryjno-TechnicznychKierunekInformatykaProfilogólnoakademickiRodzaj studiówProgram ErasmusSemestr rozpoczęciasemestr zimowy 2017/2018

Informacje o przedmiocie

Semestr	4	
Liczba punktów ECTS do zdobycia	7	
Typ przedmiotu	obowiązkowy	
Język nauczania	angielski	
Sylabus opracował	• dr hab. inż. Marek Kowal, prof. UZ	

Formy zajęć

i onny zajęo					
Forma zajęć	Liczba godzin w semestrze	Liczba godzin w tygodniu	Liczba godzin w semestrze	Liczba godzin w tygodniu	Forma zaliczenia
	(stacjonarne)	(stacjonarne)	(niestacjonarne)	(niestacjonarne)	
Wykład	30	2	-	-	Egzamin
Laboratorium	30	2	-	-	Zaliczenie na
					ocenę

Cel przedmiotu

- Familiarize students with the concept of artificial neural networks and their learning algorithms,
- Familiarize students with the concept of fuzzy sets and fuzzy inference mechanism,
- Familiarize students with different graph search strategies.
- Teach students to solve practical engineering problems using artificial intelligence methods.

Wymagania wstępne

Principles of programming, Algorithms and data structures

Zakres tematyczny

Artificial neural networks. Biological neuron. Mathematical model of a neuron. Simple

perceptron. Perceptron learning rule. Perceptron limitations. Models of neurons and their properties. Adaline and Madaline architectures. Multilayer neural networks. Learning of single-layer neural network. Learning of multi-layer neural network. Error back propagation algorithm. Models of dynamic neurons. Dynamic neural networks. Sample applications of artificial neural networks.

Fuzzy sets and neuro-fuzzy systems. Fuzzy sets and fuzzy logic. Operations on fuzzy sets. Fuzzy inference. Fuzzy rules. Neuro-fuzzy structures and learning algorithms. Sample applications of fuzzy systems.

Graph search strategies. The breadth first search algorithm. The depth first search algorithm. The A* search algorithm. Heuristic functions. Memory and time compelxity. The minimax algorithm. The alpha-beta pruning algorithm. Constrained search.

Metody kształcenia

Lecture, teaching laboratory classes.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Student can creatively use learned methods of AI in order to solve new problems.	 aktywność w trakcie zajęć wykonanie sprawozdań laboratoryjnyc 	• Laboratorium
Student can name and characterize fuzzy and neuro-fuzzy systems	• egzamin - ustny, opisowy, testowy i in	ne • Wykład
Student can name and define uninformed and heuristic graph search algorithms.	• egzamin - ustny, opisowy, testowy i in	ne • Wykład
Student can name artificial neuron types and characterize their properties.	• egzamin - ustny, opisowy, testowy i in	ne • Wykład

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Student is able to design and implement a program for heuristic	 kolokwium 	 Laboratorium
search.	 obserwacja i ocena aktywności 	i na zajęciach
	 sprawdzian z progami punktow 	vymi
Student is able to implement and use artificial neural networks to	• kolokwium	Laboratorium
solve engineering problems.	 obserwacja i ocena aktywności 	i na zajęciach
	 sprawdzian z progami punktow 	vymi
Student is able to implement and use fuzzy and neuro-fuzzy	• kolokwium	Laboratorium
systems to solve engineering problems.	 obserwacja i ocena aktywności 	i na zajęciach
	 sprawdzian z progami punktow 	vymi
Student is aware of the computational complexity of learned Al methods.	• egzamin - ustny, opisowy, testo	owy i inne • Wykład

Warunki zaliczenia

Lecture - the passing criterion is a sufficient mark from the final test. Laboratory - the passing criterion are positive marks for laboratory exercises and tests. Final mark components = lecture: 50% + teaching laboratory: 50%

Literatura podstawowa

- 1. Russell S., Norvig P.: Artificial Intelligence: A Modern Approach, Prentice Hall, 2009.
- 2. Bishop C.M., Hinton G. : Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.
- 3. Edelkamp S., Schroedl S.: Heuristic Search: Theory and Applications, Morgan Kaufmann, 2012.
- 4. Zimmermann H-J.: Fuzzy Set Theory and Its Applications, Springer, 2006.

Literatura uzupełniająca

- 1. Bishop C.: Pattern Recognition and Machine Learning, Springer Verlag, 2006.
- 2. Goodfellow I., Bengio Y., Courville A.: Deep Learning, MIT Press, 2016.
- 3. Ross. T.: Fuzzy Logic with Engineering Applications, Wiley, 2004.

Uwagi

Zmodyfikowane przez dr hab. inż. Marek Kowal, prof. UZ (ostatnia modyfikacja: 05-05-2017 12:59)

Wygenerowano automatycznie z systemu SylabUZ