Industrial computer networks - opis przedmiotu

Informacje ogólne	
Nazwa przedmiotu	Industrial computer networks
Kod przedmiotu	11.9-WE-INFP-InComNet-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Informatyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus
Semestr rozpoczęcia	semestr zimowy 2017/2018

Informacje o przedmiocie	
Semestr	6
Liczba punktów ECTS do zdobycia	5
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	• dr inż. Adam Markowski

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	30	2	-	-	Egzamin
Laboratorium	30	2	-	-	Zaliczenie na
					ocenę

Cel przedmiotu

To familiarize students with the basic solutions used in the field of industrial computer networks.

To shape basic skills in programming using digital serial interfaces used in industrial automation.

To shape basic skills in the design and characterization of communication properties of distributed systems – control.

Wymagania wstępne

Experiment methodology I and II, Principles of programming, Microprocessor systems, Computer networks I and II

Zakres tematyczny

The evolution of measuring - controlling systems. The architecture of computer industrial networks. Topology of industrial networks. Transmission media. Access methods to a medium in industrial networks: Master-Slave, Token-Passing, CSMA and TDMA.

Standard communication protocols. Characteristics of standard communication protocols: PROFIBUS, MODBUS, CAN, LonWorks, INTERBUS-S, ASI and HART.

Industrial Ethernet. Characteristics of selected solutions: PROFINET, EtherCAT and Powerlink. Internet technologies in computer industrial networks. Dedicated WWW servers.

Analysis of communication efficiency and time parameters of selected protocols. Time determination in industrial networks. Industrial network components. Converters, amplifiers, concentrators, nodes, routers, bridges and gates. Integration of industrial networks with local computer networks.

Utility programs for creating intelligent devices operating in industrial network nodes. Software of serial digital interfaces for data exchange with industrial automation devices. Integration and management of industrial networks. Methods of industrial network integration. Industrial network analysers and testers. Properties of industrial networks analysers and testers.

Standards engineering of industrial network environments. Specifics of application areas for particular standards. Elements of industrial network designing.

Metody kształcenia

Lecture, laboratory exercises.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can characterize basic computer solutions in the area of industrial networks	egzamin - ustny, opisowy, testowy i innesprawdzian	e • Wykład
Can choose the devices to create a distributed measurement and control system for the given simple object	 bieżąca kontrola na zajęciach sprawdzian wykonanie sprawozdań laboratoryjnych 	• Laboratorium

Opis efektu	Symbole efektów Metody weryfikacji	Forma zajęć
Can configure and use basic serial digital interfaces for programming	 bieżąca kontrola na zajęciach 	Laboratorium
data exchange with automation devices	sprawdzian	
	 wykonanie sprawozdań labora 	atoryjnych
Can run the analysis of communication properties of the presented	• egzamin - ustny, opisowy, tesi	towy i inne • Wykład
measuring and control system	• sprawdzian	
Understands aim of application of computer industrial networks	• egzamin - ustny, opisowy, test	towy i inne • Wykład
	 sprawdzian 	

Warunki zaliczenia

Lecture – obtaining a positive grade in written or oral exam.

Laboratory – the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.

Calculation of the final grade: lecture 50% + laboratory 50%

Literatura podstawowa

- 1. Mielczarek Wojciech: Serial digital interfaces, Helion, Gliwice, 1999 (in Polish)
- 2. Nawrocki W.: Computer measuring systems. WKŁ, Warszawa 2002 (in Polish)
- 3. Sacha K.: Local Profibus networks. MIKOM, Warszawa 1998 (in Polish)
- 4. Winiecki W.: The organisation of computer measuring systems. Oficyna Wydawnicza Politechniki Warszawskiej WPW, Warszawa 1997 (in Polish)
- 5. Lesiak P., Świsulski D.: Examples of computer measuring methods, Agenda Wydawnicza PAK, Warszawa, 2002 (in Polish)
- 6. Nawrocki W.: Distributed measuring systems, WKŁ, Warszawa 2006 (in Polish)
- 7. Kwiecień R.: Computer systems for industrial automation, Helion, Gliwice 2012 (in Polish)
- 8. Mackay S., Wright E., Reynders D., Park J.: Practical Industrial Data Networks: Design, Installation and Troubleshooting, Newnes, 2004
- 9. Reynders D., Mackay S., Wright E.: Practical Industrial Data Communications: Best Practice Techniques, Butterworth-Heinemann, 2004

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr inż. Adam Markowski (ostatnia modyfikacja: 09-05-2017 12:57)

Wygenerowano automatycznie z systemu SylabUZ