
Object-oriented programming - course description
General information
Course name Object-oriented programming
Course ID 11.3-WE-AutP-O-OP-Er 
Faculty Faculty of Computer Science, Electrical Engineering and Automatics 
Field of study Automatic Control and Robotics 
Education profile academic
Level of studies Erasmus programme
Beginning semester winter term 2017/2018

Course information
Semester 2
ECTS credits to win 5 
Course type obligatory
Teaching language english
Author of syllabus dr hab. inż. Paweł Majdzik, prof. UZ

Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Credit with grade
Laboratory 30 2 - - Credit with grade

Aim of the course
To provide basic knowledge about object programming paradigms.

To provide basic knowledge about abstract data typing definition with member functions (encapsulation),

To provide basic knowledge about inheritance, polymorphism and virtual functions, templates of classes and functions.

To give basic skills in designing programs and utilizing tools (e.g. tools from Standard Template Library).

Prerequisites
Principles of programming, Algorithms and data structures

Scope
Introduction to object programming. Concept of abstract data typing. Class definition. Encapsulation – declaration and definition of class member methods. Private and public 
class members. Constructors and destructors. Default and copy constructors. Synthesized constructors. Destructors.

Operators overloading. User defined conversions: converting function, converting constructor. Functions overloading: friend functions and inline functions, constructor and 
operator conversion.

Inheritance rules. Inheritance and the composition of objects. Protected members. Multiple and multi-base inheritance. Problem of variable names in multi-base inheritance. 
Polymorphism. Polymorphism. Virtual functions. Pure virtual functions. Early and late binding. Time and memory costs connected with application of polymorphism. Abstract 
classes - defining and examples of abstract classes application in object-oriented programs.

Standard Template Library. Function templates. Specialized functions. Phases of function adjustment. Class templates. Definition of class templates. Class templates versus 
microdefinitions. Containers and algorithms, iterators, associative containers, function objects. Designing of object-oriented programming. Design pattern .

Adapter pattern, facade pattern, bridge pattern etc..

Teaching methods
Lectures, laboratory exercises.

Learning outcomes and methods of theirs verification
Outcome description Outcome symbols Methods of verification The class form
Knows basic design templates and understands their meanings in 
flexible software design. 

activity during the classes
an exam - oral, descriptive, test and other
an ongoing monitoring during classes

Lecture
Laboratory

Can define and implement basic integral class elements: constructors, 
operator functions, destructors 

an ongoing monitoring during classes
internship's documentation

Lecture
Laboratory

Student is able to design and implement simple object programs a draft
activity during the classes

Laboratory

https://wiea.uz.zgora.pl/
https://wiea.uz.zgora.pl/
https://wiea.uz.zgora.pl/


Outcome description Outcome symbols Methods of verification The class form
Understands basic concepts related to object programming: 
encapsulation, homogeneity

an exam - oral, descriptive, test and other
an ongoing monitoring during classes

Lecture
Laboratory

Can define and implement basic integral class elements: constructors, 
operator functions, destructors 

an exam - oral, descriptive, test and other
an ongoing monitoring during classes

Lecture
Laboratory

Assignment conditions
Lecture – the passing condition is to obtain a positive mark from the examination.

Laboratory – the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Calculation of the final grade: lecture 50% + laboratory 50%

Recommended reading
Eckel B.: Thinking in C++, Prentice Hall, US Ed edition, 2002 2.

Stroustrup B.: The C++ Programming Language, Addison – Wesley, 2004

Further reading
Lippman S.B.: Inside the C++ Object Model, Addison – Wesley, 1996

Notes

Modified by dr hab. inż. Wojciech Paszke, prof. UZ (last modification: 29-04-2020 11:51)

Generated automatically from SylabUZ computer system


