Software for measurement and control equipment - opis przedmiotu

Inform	acie	000	Ine
mom	luoje	ogo	inc

Software for measurement and control equipment
06.0-WE-AutP-SNCE-Er
Wydział Nauk Inżynieryjno-Technicznych
Automatyka i robotyka
ogólnoakademicki
Program Erasmus
semestr zimowy 2017/2018

Informacje o przedmiocie	
Semestr	5
Liczba punktów ECTS do zdobycia	3
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	• dr hab. inż. Janusz Kaczmarek, prof. UZ

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1		-	Zaliczenie na ocenę
Laboratorium	30	2	-	-	Zaliczenie na ocenę

Cel przedmiotu

- Skills and competences in the field of designing and creating software for embedded systems with the emphasis on measurement and control equipment
- Shaping basic skills in developing embedded software in low and high level languages

Wymagania wstępne

Principles of programming, Foundations of digital and microprocessor engineering, Metrology

Zakres tematyczny

Microprocessor-based equipment for measurement and control. Selected elements of a microprocessor technique. Architecture of microprocessor devices for measurement and control.

Introduction to programming embedded systems. Integrated programming environments. Programming languages - assembler and high-level programming languages. Hybrid programming technique. Effective fixed-point arithmetic on fractional numbers. Methods of code optimization. Programming of internal and external peripherals.

Application of real-time operating system (RTOS) to design the software for embedded systems with low resources. Basic terms. Principles and aims of applying RTOS systems. Mechanisms of RTOS kernel. Scalability of RTOS. Examples of RTOS designed for embedded systems. Advantages of applying RTOS in measurement and control equipment.

Implementation of selected measurement and control algorithms. Control procedures for a/c and c/a converters. Programming methods for generating and measuring analog and digital signals. Implementation of loop control in industrial regulators.

Software and hardware debugging methods for embedded systems.

Metody kształcenia

Lecture: conventional lecture

Laboratory: laboratory exercises, group work

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can carry out simple programming tasks in low and high level languages (assembler and C language) which are related to applications for measurement-		 bieżąca kontrola na zajęciach sprawdzian 	• Laboratorium
control devices.		 wykonanie sprawozdań laboratoryjnych 	

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Has a basic knowledge on data processing in microprocessor systems with limite hardware resources.	d	 bieżąca kontrola na zajęciach kolokwium wykonanie sprawozdań laboratoryjnych 	WykładLaboratorium
Knows architecture of microprocessor measurement-control devices.		• kolokwium	 Wykład

Warunki zaliczenia

Lecture - the passing condition is to obtain a positive mark from the final test.

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Calculation of the final grade: lecture 40% + laboratory 60%

Literatura podstawowa

- 1. Barney G.C.: Intelligent Instrumentation. Microprocessor Applications in Measurement and Control, Prentice Hall, 1988.
- 2. Labrosse J.J.: Embedded System Building Blocks, CMP Books, 2000.
- 3. Tumański S.: Measuring Technique, WNT, Warszawa, 2007 (n Polish)
- 4. Mazidi M.A, Mazidi J.G, McKinlay R.D.: The 8051 Microcontroller and Embedded System Using Assembly and C, Pearson Education, 2007.

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. inż. Janusz Kaczmarek, prof. UZ (ostatnia modyfikacja: 02-05-2017 11:32)

Wygenerowano automatycznie z systemu SylabUZ