Digital microsystems - opis przedmiotu

Inform	acie	OUD	Ine
monn	uoje	ogo	in c

Informacje ogolne	
Nazwa przedmiotu	Digital microsystems
Kod przedmiotu	06.2-WE-AutP-DMicros-Er
Wydział	Wydział Nauk Inżynieryjno-Technicznych
Kierunek	Automatyka i robotyka
Profil	ogólnoakademicki
Rodzaj studiów	Program Erasmus
Semestr rozpoczęcia	semestr zimowy 2017/2018

Informacie o przedmiocie

Semestr	5
Liczba punktów ECTS do zdobycia	3
Typ przedmiotu	obieralny
Język nauczania	angielski
Sylabus opracował	

Formy zajęć					
Forma zajęć	Liczba godzin w semestrze (stacjonarne)	Liczba godzin w tygodniu (stacjonarne)	Liczba godzin w semestrze (niestacjonarne)	Liczba godzin w tygodniu (niestacjonarne)	Forma zaliczenia
Wykład	15	1	-	-	Zaliczenie na ocene
Laboratorium	30	2	-	-	Zaliczenie na ocene

Cel przedmiotu

- To provide fundamental knowledge in digital microsystems, hardware/software co-design, integration of analog and digital technologies.
- To develop skills in design and programming of digital microsystems.

Wymagania wstępne

Foundations of discrete systems, Computer system architecture, Foundations of digital and microprocessor engineering, Discrete process control, Programming with basics of algorithmic.

Zakres tematyczny

General information: digital microsystem characteristics, structure and working. Review of producers and systems.

Design: Classical design and hardware/software co-design of hybrid systems. Modelling, verification, implementation languages - ANSI C, VHDL.

System decomposition: algorithms of decomposition, CAE tools for decomposition.

Communication: ways for data transmission between hardware and software modules, memory sharing.

Software packages: POLIS, ATMEL System Designer, Aldec A-HDL.

Analog interface: analog signals acquisition, analog signal shaping, A/D and D/A converters, pulse-width modulation, real time clock, supervision systems.

Metody kształcenia

Lecture, laboratory exercises.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can design a simple hardware-software system		 bieżąca kontrola na zajęciach wykonanie sprawozdań laboratoryjnych 	• Laboratorium
Can handle selected tools supporting digital microsystem design		 bieżąca kontrola na zajęciach wykonanie sprawozdań laboratoryjnych 	• Laboratorium
Can indicate the application areas of digital microsystems in control systems		• zaliczenie - ustne, opisowe, testowe i inne	• Wykład
Can say and characterize basic concepts related to digital microsystems		• zaliczenie - ustne, opisowe, testowe i inne	• Wykład

Opis efektu	Symbole efektów	Metody weryfikacji	Forma zajęć
Can suggest functionality description method for hardware- software hybrid systems		• zaliczenie - ustne, opisowe, testowe i inne	 Wykład
Is open to technological novelties in the area of digital microsystems		• zaliczenie - ustne, opisowe, testowe i inne	• Wykład
Warunki zaliczenia			
Lecture – the passing condition is to obtain a positive mark fr	om the test conducte	d at least once persemester.	

Laboratory - the passing condition is to obtain positive marks from all laboratory exercises to be planned during the semester.

Calculation of the final grade: lecture 50% + laboratory 50%

Literatura podstawowa

- 1. DeMicheli G.: Readings in Hardware/Software Codesign, Morgan Kaufmann, 2001
- 2. Plassche R.: CMOS Integrated Analog-To-Digital and Digital-To-Analog Converters, Kluwer Academic Pub, 2003
- 3. Vahid F.: Digital Design, Wiley, 2006
- 4. Zwolinski M.: Digital System Design with VHDL, 2nd Edition, Prentice-Hall, 2003

Literatura uzupełniająca

Uwagi

Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 03-05-2020 21:14)

Wygenerowano automatycznie z systemu SylabUZ