SylabUZ

Wygeneruj PDF dla tej strony

Metody optymalizacji - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Metody optymalizacji
Kod przedmiotu 11.9-WE-AiRD-MO
Wydział Wydział Informatyki, Elektrotechniki i Automatyki
Kierunek Automatyka i robotyka / Komputerowe Systemy Automatyki
Profil ogólnoakademicki
Rodzaj studiów drugiego stopnia z tyt. magistra inżyniera
Semestr rozpoczęcia semestr zimowy 2017/2018
Informacje o przedmiocie
Semestr 1
Liczba punktów ECTS do zdobycia 6
Typ przedmiotu obowiązkowy
Język nauczania polski
Sylabus opracował
  • prof. dr hab. inż. Andrzej Obuchowicz
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 30 2 18 1,2 Egzamin
Laboratorium 30 2 18 1,2 Zaliczenie na ocenę

Cel przedmiotu

  • zapoznanie studentów z podstawowymi technikami programowania liniowego i nieliniowego
  • ukształtowanie wśród studentów umiejętności specyfikacji zadań optymalizacji w zadaniach projektowania inżynierskiego i rozwiązania ich z wykorzystaniem pakietów numerycznych

Wymagania wstępne

Analiza matematyczna, Algebra liniowa z geometrią analityczną, Metody numeryczne

Zakres tematyczny

Zadania programowania liniowego (ZPL). Postacie klasyczna, standardowa i kanoniczna ZPL. Metoda geometryczna, rozwiązań bazowych i algorytm sympleks. Programowanie ilorazowe. Problemy transportowe i przydziału.

Zadania programowania nieliniowego (ZPN) - warunki optymalności. Zbiory i funkcje wypukłe. Warunki konieczne i wystarczające istnienia ekstremum funkcji przy braku ograniczeń. Metoda mnożników Lagrange’a. Ekstrema funkcji przy występowaniu ograniczeń równościowych i nierównościowych. Warunki Karusha-Kuhna-Tuckera (KKT). Regularność ograniczeń. Warunki istnienia punktu siodłowego. Programowanie kwadratowe.

Obliczeniowe metody rozwiązywania ZPN. Metody poszukiwania minimum w kierunku: metody Fibonacciego, złotego podziału, Kiefera, Powella i Davidona. Metody poszukiwań prostych: metody Hooke’a-Jeevesa i Neldera-Meada. Ciągły i dyskretny algorytm gradientu. Metoda Newtona. Metody Gaussa-Newtona i Levenberga-Marquardta. Podstawowe metody kierunków poprawy: metody Gaussa-Seidela, najszybszego spadku, gradientów sprzężonych Fletchera-Reevesa, zmiennej metryki Davidona-Fletchera-Powella. Poszukiwanie minimum przy warunkach ograniczających: metody funkcji kary wewnętrznej, zewnętrznej i mieszanej, metoda rzutowania gradientu, metoda sekwencyjnego programowania kwadratowego, metody kierunków dopuszczalnych.

Podstawy optymalizacji dyskretnej i mieszanej. Programowanie całkowitoliczbowe. Problemy najkrótszych dróg i maksymalnego przepływu. Elementy programowania dynamicznego.

Optymalizacja globalna. Optymalizacja stochastyczna. Adaptacyjne przeszukiwanie losowe. Metody metaheurystyczne: algorytm symulowanego wyżarzania, algorytmy ewolucyjne, optymalizacja rojem cząstek.

Optymalizacja wielokryterialna i adaptacja w środowiskach niestacjonarnych. Paretooptymlaność. Typy środowisk niestacjonarnych, klasyfikacja problemów adaptacyjnych.

Zagadnienia praktyczne. Upraszczanie i eliminacja ograniczeń. Eliminacja nieciągłości. Skalowanie zadania. Numeryczne przybliżanie gradientu. Wykorzystanie procedur bibliotecznych. Przegląd wybranych bibliotek procedur optymalizacyjnych. Omówienie metod zaimplementowanych w popularnych systemach przetwarzania numerycznego i symbolicznego.

Metody kształcenia

wykład: wykład konwencjonalny

laboratorium: ćwiczenia laboratoryjne

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

Wykład - warunkiem zaliczenia jest uzyskanie pozytywnej oceny z egzaminu przeprowadzonego w formie pisemnej lub ustnej

Laboratorium - warunkiem zaliczenia jest uzyskanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych, przewidzianych do realizacji w ramach programu laboratorium

Składowe oceny końcowej = wykład: 50% + laboratorium: 50%

Literatura podstawowa

  1. Kukuła K.(red.): Badania operacyjne w przykładach i zadaniach, PWN, Warszawa, 2006
  2. Bertsekas D.: Nonlinear programming, Athena Scientific, 2004
  3. Ignasiak E.(red.): Badania operacyjne, PWN, Warszawa, 2001
  4. Kusiak J., Danielewska-Tułecka A., Oprocha P.: Optymalizacja. Wybrane metody z przykładami zastosowań, PWN, 2009

Literatura uzupełniająca

  1. Bertsekas D.: Convex Analysis and Optimization, Athena Scientific, 2003
  2. Spall J.: Introduction to Stochastic Search and Optimization: Estimation, Simulation and Control, Wiley InterScience, 2003

Uwagi


Zmodyfikowane przez prof. dr hab. inż. Andrzej Obuchowicz (ostatnia modyfikacja: 28-04-2017 23:11)