
Object oriented programming - course description
General information
Course name Object oriented programming
Course ID 13.2-WF-FizP-OP-S17 
Faculty Faculty of Physics and Astronomy 
Field of study Physics 
Education profile academic
Level of studies First-cycle Erasmus programme
Beginning semester winter term 2017/2018

Course information
Semester 3
ECTS credits to win 6 
Course type obligatory
Teaching language english
Author of syllabus dr Marcin Kośmider

Classes forms
The class form Hours per semester (full-time) Hours per week (full-time) Hours per semester (part-time) Hours per week (part-time) Form of assignment
Lecture 30 2 - - Exam
Laboratory 30 2 - - Credit with grade

Aim of the course
The aim of this course is to introduce the Object Oriented Programming techniques required to develope and create modern applications related to the „every day” and science 
problems. This is an active course where students solve realistic problems from beggining. Students learn how to analyse problem in the object oriented way and how to 
implement code according to the standards.

Prerequisites
The efficient use of the Linux system (both in the terminal and in the graphical environment), knowledge of the basics of programming including procedural programming.

Scope
1. Introduction

- object and procedural programming

- class, object and methods

- constructor and destructor

- encapsulation

- pointers

- operators overloading

- friend function

2. Using standard class

- IO operations

- short introduction to the STL containers and algorithms

3. Pointers

- objects and dynamic memory allocation

- copy constructor

- destructor

- „intelligent” pointers

4. Inheritance, polymorphism and code reuse

- inheritance

http://www.wfa.uz.zgora.pl/
http://www.wfa.uz.zgora.pl/
http://www.wfa.uz.zgora.pl/


- virtual and abstract classes and methods

- interfaces

- polymorphism

- the idea of „code reuse”

5. Clean code

- name standards

- header files

- namespaces

- makefile

- code comment and documentation

- version control systems

6. Templates in C++

7. Exception

8. Object oriented modelling and programming

- defining and analysing problem and model creation

- UML diagrams

- coding UML diagrams in C++

9. Design patterns

- the idea

- creational patterns

- structural patterns

- behaviour patterns

10. Frameworks

- the idea

- Qt as as sample

Teaching methods
Lecture:

Convencional lecture, work with problems, discusiion, workshop

Laboratory:

Laboratory exercise, project, work in group, presentation, work with documentation, independed work, brain storm

Learning outcomes and methods of theirs verification
Outcome description Outcome 

symbols
Methods of verification The class form

Student can compile and run program. For a given physical problem student can analyse and 
interpret computational resuts and verify the correctness of a written application

a discussion
a project
an exam - oral, descriptive, 
test and other
an ongoing monitoring 
during classes

Lecture
Laboratory

Student knows how to search, find and use modern tools and informations that can be used 
to solve given problem

a discussion
a project
an exam - oral, descriptive, 
test and other
an ongoing monitoring 
during classes

Lecture
Laboratory



Outcome description Outcome
symbols

Methods of verification The class form

Student can define problem and explain the problem posed by breaking it into elementary 
problems, describes and analyses it in the object oriented way, indicating the models, 
objects and relations between them. 

a discussion
a project
an exam - oral, descriptive, 
test and other
an ongoing monitoring 
during classes

Lecture
Laboratory

The student can apply his knowledge of programming and object modeling and available 
tools to present ways to solve the considered problem in physics or related fields in the form 
of the source code of the program.

a discussion
a project
an exam - oral, descriptive, 
test and other
an ongoing monitoring 
during classes

Lecture
Laboratory

Student can create and present report from given problem a discussion
a project
an exam - oral, descriptive, 
test and other
an ongoing monitoring 
during classes

Laboratory

Student know laboratory statute and BHP rules a discussion
a project
an ongoing monitoring 
during classes

Laboratory

The student is able to cooperate in a group, feels responsible for the tasks entrusted to him, 
is open to new concepts and ideas.

a discussion
a project
an ongoing monitoring 
during classes

Lecture
Laboratory

Assignment conditions
Lecture:
A practical exam consisting in solving a given problem (chosen from the list of problems). Final evaluation is subject to problem analysis, presentation of problem solving 
algorithms, source code as well as evaluation and verification of obtained results

Laboratory:
The final grade consists of: average marks obtained during laboratories with activity and short tests to check learning progress (50% of final grade), semester project 
assessment (50% of final grade). The condition for passing the semester project is its implementation, preparation and delivery of the project report and its presentation within 
the prescribed period. Before taking the exam the student must get a pass from the exercises.

Final grade: weighted average of exam grades (60%) and exercises (40%).

Recommended reading
[1] Bruce Eckel, Thinking in C++ Edycja Polska, Helion Gliwice, 2002.
[2] Bruce Eckel, Thinking in C++ Edycja Polska, Tom 2, Helion Gliwice, 2004.
[3] Steve Holzner, Design patterns for dummies, Willey Publishing Ing. Indianapolis 2006.

Further reading
[1] Internet

Notes
The lecture should take place in a room with Internet access. Computer laboratories should take place in groups enabling independent work at the computer of every student 
and not more than 12 people.

Modified by dr hab. Maria Przybylska, prof. UZ (last modification: 06-07-2018 21:52)

Generated automatically from SylabUZ computer system


