Elements of atomic and nuclear physics - course description

General information		
Course name	Elements of atomic and nuclear physics	
Course ID	13.2-WF-FizP-EANP-S17	
Faculty	Faculty of Physics and Astronomy	
Field of study	Physics	
Education profile	academic	
Level of studies	First-cycle Erasmus programme	
Beginning semester	winter term 2017/2018	

Course information	
Semester	4
ECTS credits to win	5
Course type	obligatory
Teaching language	english
Author of syllabus	• dr hab. Piotr Lubiński, prof. UZ

Classes forms								
The class form	Hours per semester (full-time)	Hours per week (full-time)	Hours per semester (part-time)	Hours per week (part-time)	Form of assignment			
Lecture	30	2	-	-	Exam			
Class	30	2	-	-	Credit with grade			

Aim of the course

Acquaint students with the basics of the atomic physics and atomic nucleus physics.

Prerequisites

Knowledge of the basics of classical and relativistic mechanics, thermodynamics, optics, electricity and magnetism.

Scope

- 1. The history of discoveries leading to the modern physics of atom and atomic nucleus.
- 2. Basic attributes of atoms and atomic nuclei.
- 3. Atom models: classic and these developed as part of the old and new quantum theory.
- 4. Atomic transitions and spectra.
- 5. Quantum numbers, selection rules.
- 6. Experimental methods of atomic physics.
- 7. Nuclear interactions.
- 8. Models of the structure of atomic nuclei.
- 9. Radioactive decay.

Teaching methods

Conventional lecture

Accounting exercises.

Learning outcomes and methods of theirs verification

Outcome symbols Methods of verification	The class form
 a discussion 	 Lecture
 a test 	Class
 an exam - oral, descriptive, tes 	st and
other	
 an ongoing monitoring during 	
classes	
a discussion	Lecture
 an ongoing monitoring during 	Class
classes	
	 a discussion a test an exam - oral, descriptive, teather an ongoing monitoring during classes a discussion an ongoing monitoring during during

Outcome description	Outcome symbols Methods of verification	The class form
The student is able to analyze the basic problems of atomic and atomic nucleus	• a discussion	 Lecture
physics	• a test	Class
	 an exam - oral, descriptive, test and 	
	other	
	 an ongoing monitoring during 	
	classes	
The student is able to broaden his knowledge about atomic physics and atomic	a discussion	• Lecture
nucleus	 an exam - oral, descriptive, test and 	Class
	other	
The student understands the need for further education and knows the possibilities	a discussion	• Lecture
of improving their competences		Class
The student can use various sources of information to broaden knowledge	a discussion	• Lecture
	• a test	Class
	 an exam - oral, descriptive, test and 	
	other	
	 an ongoing monitoring during 	
	classes	

Assignment conditions

Lecture: Written and oral exam. Passing condition - a positive exam grade.

Exercises: Active presence on exercises, passing two tests with computational tasks.

Before taking the exam the student must get a pass from the exercises.

Final grade: weighted average of the exam grades (60%) and two tests (20% each).

Recommended reading

[1] J. Ginter, Wstęp do fizyki atomu, cząsteczki i ciała stałego, PWN, Warszawa 1986.

[2] E. Skrzypczak, Z. Szefliński, Wstęp do fizyki jądra atomowego i cząstek elementarnych, PWN, Warszawa 1995.

Further reading

[1] H. Haken, H. Wolf, Atomy i kwanty. Wprowadzenie do współczesnej spektroskopii atomowej, Wydawnictwo Naukowe PWN, Warszawa, 2012

[2] A. Hennel, W. Szuszkiewicz, Zadania z fizyki atomu, cząsteczki i ciała stałego, Państwowe Wydawnictwo Naukowe, Warszawa, 1985

Notes

Modified by dr hab. Maria Przybylska, prof. UZ (last modification: 07-07-2018 23:49)

Generated automatically from SylabUZ computer system