SylabUZ

Wygeneruj PDF dla tej strony

Analiza matematyczna II - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Analiza matematyczna II
Kod przedmiotu 11.1-WE-EP-AM2
Wydział Wydział Informatyki, Elektrotechniki i Automatyki
Kierunek Elektrotechnika
Profil ogólnoakademicki
Rodzaj studiów pierwszego stopnia z tyt. inżyniera
Semestr rozpoczęcia semestr zimowy 2018/2019
Informacje o przedmiocie
Semestr 2
Liczba punktów ECTS do zdobycia 5
Typ przedmiotu obowiązkowy
Język nauczania polski
Sylabus opracował
  • dr Dorota Głazowska
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Ćwiczenia 30 2 18 1,2 Zaliczenie na ocenę
Wykład 15 1 9 0,6 Egzamin

Cel przedmiotu

 Zapoznanie studenta z podstawowymi pojęciami dotyczącymi ciągów i szeregów funkcyjnych, podstawami rachunku różniczkowego funkcji wielu zmiennych, metodami badania ekstremów funkcji wielu zmiennych, rachunkiem całkowym wielu zmiennych oraz z podstawowymi pojęciami z teorii równań różniczkowych zwyczajnych i metodami rozwiązywania wybranych typów równań różniczkowych zwyczajnych.

Wymagania wstępne

Zaliczenie przedmiotu Analiza Matematyczna I.

Zakres tematyczny

Wykład 

  1. Ciągi i szeregi funkcyjne. Zbieżność ciągów i szeregów funkcyjnych. Szeregi potęgowe. Przykłady rozwinięć w szeregi Taylora. Szeregi Fouriera. Rozwijanie funkcji zmiennej rzeczywistej w szereg Fouriera. Twierdzenie Dirichleta, Tożsamość Parsevalla. (5 godz. na studiach stacjonarnych, 3 godz. na studiach niestacjonarnych)
  2. Ciągi w przestrzeni Rn. Funkcje wielu zmiennych. Granica i ciągłość funkcji n zmiennych. Pochodna kierunkowa i pochodne cząstkowe funkcji n zmiennych. Elementy teorii pola. Pochodne cząstkowe i różniczki wyższych rzędów. Wzór Taylora. Ekstrema lokalne i globalne funkcji n zmiennych. (5 godz. na studiach stacjonarnych, 3 godz. na studiach niestacjonarnych)
  3. Równania różniczkowe zwyczajne. Podstawowe pojęcia teorii równań różniczkowych. Metody rozwiązywania wybranych równań różniczkowych zwyczajnych rzędu I (o zmiennych rozdzielonych, równanie liniowe, równanie Bernoulliego, równanie zupełne). Równanie liniowe rzędu II o stałych współczynnikach i zjawiska o naturze oscylacyjnej. Zastosowania w teorii obwodów elektrycznych. (5 godz. na studiach stacjonarnych, 3 godz. na studiach niestacjonarnych)
  4.  Rachunek całkowy w przestrzeniach n-wymiarowych. Całki wielokrotne. Definicja n-wymiarowej całki Riemanna. Całki iterowane i wzór Fubiniego. Całki w obszarach normalnych. Zmiana zmiennych w całkach wielokrotnych. Zastosowania całek wielokrotnych. (zakres materiału do samodzielnego opracowania przez studenta na podstawie materiałów wskazanych przez prowadzącego)

Ćwiczenia

  1. Badanie zbieżności punktowej i jednostajnej ciągów funkcyjnych. (2 godz. na studiach stacjonarnych, 1 godz. na studiach niestacjonarnych)
  2. Ćwiczenie zastosowania kryterium Weierstrassa do badania zbieżności jednostajnej szeregów funkcyjnych. (1 godz. na studiach stacjonarnych, 1 godz. na studiach niestacjonarnych)
  3. Wyznaczanie promienia i przedziału zbieżności szeregu potęgowego. (2 godz. na studiach stacjonarnych, 2 godz. na studiach niestacjonarnych)
  4. Rozwijanie funkcji w szereg Taylora. (2 godz. na studiach stacjonarnych)
  5. Rozwijanie funkcji zmiennej rzeczywistej w szereg Fouriera. (2 godz. na studiach stacjonarnych, 2 godz. na studiach niestacjonarnych)
  6. Badanie zbieżności ciągów punktów płaszczyzny i ciągów punktów przestrzeni. (1 godz. na studiach stacjonarnych, 1 godz. na studiach niestacjonarnych)
  7. Obliczanie granic funkcji dwóch i trzech zmiennych. (2 godz. na studiach stacjonarnych, 1 godz. na studiach niestacjonarnych)
  8. Wyznaczanie pochodnych kierunkowych i pochodnych cząstkowych funkcji dwóch i trzech zmiennych zmiennych. (3 godz. na studiach stacjonarnych, 2 godz. na studiach niestacjonarnych)
  9. Ekstrema lokalne i globalne funkcji dwóch i trzech zmiennych zmiennych. (4 godz. na studiach stacjonarnych, 2 godz. na studiach niestacjonarnych)
  10. Metody rozwiązywania wybranych równań różniczkowych zwyczajnych rzędu I (o zmiennych rozdzielonych, równanie liniowe, równanie Bernoulliego, równanie zupełne). (5 godz. na studiach stacjonarnych, 3 godz. na studiach niestacjonarnych)
  11. Równanie liniowe rzędu II o stałych współczynnikach. Zastosowania w teorii obwodów elektrycznych. (3 godz. na studiach stacjonarnych, 1 godz. na studiach niestacjonarnych)

Kolokwia. (3×1 godz. na studiach stacjonarnych, 2×1 godz.na studiach niestacjonarnych)

 

Metody kształcenia

Wykład konwencjonalny; ćwiczenia, w ramach których studenci rozwiązują zadania i dyskutują; praca w grupach; praca z książką  i przy pomocy internetu.

Efekty kształcenia i metody weryfikacji osiągania efektów kształcenia

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

  1. Trzy kolokwia (dwa na studiach niestacjonarnych) z zadaniami o zróżnicowanym stopniu trudności, pozwalającymi na sprawdzenie, czy student osiągnął efekty kształcenia w stopniu minimalnym. Aby uzyskać pozytywną ocenę z ćwiczeń, należy zdobyć minimum 40% sumy punktów ze wszystkich kolokwiów.
  2. Egzamin w postaci testu z progami punktowymi.

Warunkiem przystąpienia do egzaminu jest pozytywna ocena z ćwiczeń. Warunkiem zaliczenia przedmiotu jest pozytywna ocena z egzaminu. Ocena z przedmiotu jest średnią arytmetyczną oceny z ćwiczeń i oceny z egzaminu.

 

 

Obciążenie pracą

Obciążenie pracą Studia stacjonarne
(w godz.)
Studia niestacjonarne
(w godz.)
Godziny kontaktowe (udział w zajęciach; konsultacjach; egzaminie, itp.) 70 50
Samodzielna praca studenta (przygotowanie do: zajęć, kolokwium, egzaminu; studiowanie literatury przygotowanie: pracy pisemnej, projektu, prezentacji, raportu, wystąpienia; itp.) 55 75
Łącznie 125 125
Punkty ECTS Studia stacjonarne Studia niestacjonarne
Zajęcia z udziałem nauczyciela akademickiego 3 2
Zajęcia bez udziału nauczyciela akademickiego 2 3
Łącznie 5 5

Literatura podstawowa

  1. M. Gewert, Z. Skoczylas, Analiza matematyczna 2, OW GIS, Wrocław, 2008
  2. M. Gewert, Z. Skoczylas, Równania różniczkowe zwyczajne, OW GIS, Wrocław 2007
  3. W. Kołodziej, W. Żakowski, Matematyka część II, WNT, Warszawa, 2003
  4. M. Lassak, Matematyka dla studiów technicznych, WM, Bydgoszcz, 2010
  5. W. Żakowski, W. Leksiński, Matematyka część IV, PWN, Warszawa, 2008

Literatura uzupełniająca

  1. W. Krysicki. L. Włodarski, Analiza matematyczna w zadaniach część II, PWN, Warszawa, 2008
  2. R. Rudnicki, Wykłady z analizy matematycznej, PWN, Warszawa, 2004
  3. W. Stankiewicz, Zadania z matematyki dla wyższych uczelni technicznych, PWN, Warszawa, 1971

Uwagi


Zmodyfikowane przez dr hab. inż. Radosław Kłosiński, prof. UZ (ostatnia modyfikacja: 10-04-2018 21:14)