SylabUZ

Wygeneruj PDF dla tej strony

Podstawy techniki cyfrowej i mikroprocesorowej - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Podstawy techniki cyfrowej i mikroprocesorowej
Kod przedmiotu 06.5-WE-AiRP-PTCiM
Wydział Wydział Informatyki, Elektrotechniki i Automatyki
Kierunek Automatyka i robotyka
Profil ogólnoakademicki
Rodzaj studiów pierwszego stopnia z tyt. inżyniera
Semestr rozpoczęcia semestr zimowy 2018/2019
Informacje o przedmiocie
Semestr 3
Liczba punktów ECTS do zdobycia 6
Typ przedmiotu obowiązkowy
Język nauczania polski
Sylabus opracował
  • dr hab. inż. Krzysztof Sozański, prof. UZ
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 30 2 18 1,2 Zaliczenie na ocenę
Laboratorium 30 2 18 1,2 Zaliczenie na ocenę

Cel przedmiotu

- zapoznanie studentów z podstawowymi układami cyfrowymi realizowanymi za pomocą układów małej skali integracji i programowalnych układów logicznych,
- ukształtowanie umiejętności w zakresie projektowania i minimalizacji układów cyfrowych,
- zapoznanie studentów z podstawami układów mikroprocesorowych,
- ukształtowanie umiejętności w zakresie  programowania mikroprocesorów.

Wymagania wstępne

Podstawy systemów dyskretnych, Programowanie z elementami algorytmiki, Podstawy elektroniki, Architektura systemów komputerowych

Zakres tematyczny

Podstawy techniki cyfrowej. Podstawowe bramki logiczne - parametry techniczne. Klasy układów scalonych. Skala integracji. Systemy i kody liczbowe. Algebra Boole'a. Funkcja logiczne. Systemy funkcjonalnie pełne. Sposoby reprezentacji funkcji logicznej.
Układy kombinacyjne. Analiza i synteza układu kombinacyjnego. Minimalizacja funkcji logicznej. Hazard w układach kombinacyjnych.
Podstawowe przerzutniki asynchroniczne i synchroniczne. Układy sekwencyjne: Moore'a, Mealy'ego. Synteza automatów synchronicznych i analiza automatów synchronicznych. Charakterystyka układów asynchronicznych oraz porównanie z układami synchronicznymi.
Cyfrowe bloki funkcjonalne w technice MSI. Liczniki, rejestry, rejestry przesuwne. Zasady projektowania liczników asynchronicznych i synchronicznych. Projektowanie układów kombinacyjnych z wykorzystaniem: multiplekserów, dekoderów, bramek NAND.

Formaty danych stosowane w procesorach stałoprzecinkowych i zmiennoprzecinkowych. Arytmetyka stało- i zmiennoprzecinkowa.
Układy arytmetyczne. Dodawanie, odejmowanie i komparacja liczb binarnych. Układy arytmetyczne średniej skali integracji.
Pamięci ROM, RAM, EEPROM, FLASH. Układy PLD, CPLD i FPGA. Projektowanie układów cyfrowych z wykorzystaniem układów PLD i CPLD.
Mikroprocesory. Definicje i podstawowe pojęcia, klasyfikacja mikroprocesorów. Bloki funkcjonalne mikrokomputera i zasady ich współdziałania. Architektura mikroprocesora, rola jego bloków funkcjonalnych, cykl rozkazowy mikroprocesora.
Techniki programowania, lista instrukcji procesora.
Wymiana informacji w systemie mikroprocesorowym. Organizacja i synchronizacja wymiany informacji między elementami sytemu mikroprocesorowego. Sposoby adresowania pamięci i elementów wejścia-wyjścia.
Wymiana informacji między systemem mikroprocesorowym a otoczeniem zewnętrznym. Sposoby i uwarunkowania obsługi elementów otoczenia zewnętrznego systemów mikroprocesorowych. Wymiana informacji między systemami mikroprocesorowymi. Sposoby wymiany informacji: z potwierdzeniem i bez potwierdzenia, synchronicznie i asynchronicznie, równolegle i szeregowo. Wady i zalety poszczególnych sposobów, zakres stosowania.
Mikrokomputery jednoukładowe - charakterystyka zasobów, zasady aplikacji. Środki wspomagające oprogramowanie i uruchamianie systemów mikroprocesorowych.
Mikrokontrolery rodziny AVR. Platforma Arduino.
Historia, tendencje rozwojowe i porównanie cyfrowych procesorów sygnałowych. Podstawowe cechy procesorów sygnałowych. Różnice pomiędzy cyfrowym procesorem sygnałowym a mikrokontrolerem i mikroprocesorem. Architektury procesorów sygnałowych: sprzętowy układ mnożący, architektura typu Harvard, architektury wieloszynowe, przetwarzanie potokowe, skoki z opóźnieniem, operacje równoległe, długi akumulator, układ przesuwający, bufor cyrkulacyjny. Tryby adresowania pamięci: bezpośrednie, pośrednie, natychmiastowe, cyrkulacyjne, z rewersją bitów. Układy bezpośredniego dostępu do pamięci (DMA). Układy wieloprocesorowe.

Metody kształcenia

wykład: wykład konwencjonalny,
laboratorium: ćwiczenia laboratoryjne.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

Wykład - warunkiem zaliczenia jest uzyskanie pozytywnej oceny z kolokwiów przeprowadzonych w formie pisemnej.
Laboratorium - warunkiem zaliczenia jest uzyskanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych, przewidzianych do realizacji w ramach programu laboratorium.
Składowe oceny końcowej = wykład: 60% + laboratorium: 40%.

Literatura podstawowa

1. Chmiel K.: Teoria układów logicznych, Wydawnictwo Politechniki Poznańskiej, Poznań, 1994.
2. G. De Micheli: Synteza i optymalizacja układów cyfrowych, WNT, Warszawa, 1998.
3. Lisiecka-Frąszczak J.: Synteza układów cyfrowych, Wydawnictwo Politechniki Poznańskiej, Poznań, 2000.
4. W. Stallings, Organizacja i architektura systemu komputerowego, WNT, Warszawa, 2004.
5. Łuba T., Zbierzchowski B.: Komputerowe projektowanie układów cyfrowych, WKiŁ, Warszawa, 2000
6. Biernat J., Architektura komputerów, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2013.

Literatura uzupełniająca

1. Biernat J., Metody i układy arytmetyki komputerowej, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2001.
2. Łuba T.: Synteza układów logicznych, WSISiZ, Warszawa, 2000.
3. Majewski W.: Układy logiczne, WNT, Warszawa, 1992.
4. Majewski Wł., Łuba T., Jasiński K., Zbierzchowski B.: Programowalne moduły logiczne w syntezie układów cyfrowych, WKiŁ, Warszawa, 1992.
5. Pieńkos J., Turczyński J.: Układy scalone TTL w systemach cyfrowych, WKiŁ, Warszawa, 1986.

Uwagi


Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 15-03-2018 21:46)