SylabUZ

Wygeneruj PDF dla tej strony

Lokalizacja i nawigacja robotów - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Lokalizacja i nawigacja robotów
Kod przedmiotu 11.9-WE-AiRD-LiNR
Wydział Wydział Informatyki, Elektrotechniki i Automatyki
Kierunek Automatyka i robotyka / Komputerowe Systemy Automatyki
Profil ogólnoakademicki
Rodzaj studiów drugiego stopnia z tyt. magistra inżyniera
Semestr rozpoczęcia semestr zimowy 2018/2019
Informacje o przedmiocie
Semestr 2
Liczba punktów ECTS do zdobycia 6
Typ przedmiotu obowiązkowy
Język nauczania polski
Sylabus opracował
  • dr hab. inż. Maciej Patan, prof. UZ
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 30 2 18 1,2 Egzamin
Laboratorium 30 2 18 1,2 Zaliczenie na ocenę

Cel przedmiotu

  • ukształtowanie podstawowych umiejętności w zakresie formułowania i implementacji zadań lokalizacji oraz planowania ruchu robotów mobilnych,
  • zapoznanie studentów z metodami i technikami nawigowania robotami mobilnymi
  • nabycie umiejętności integrowania dostępnych systemów robota mobilnego

Wymagania wstępne

Podstawy robotyki, Sterowanie robotów, Teoria sterowania

Zakres tematyczny

Wprowadzenie. Sposoby poruszania się robotów mobilnych. Roboty wyposażone w nogi oraz roboty jeżdżące na kołach. Sformułowanie podstawowych problemów. Przykłady i typowe aplikacje.
Percepcja robota. Klasyfikacja czujników. Charakterystyka działania sensorów. Pomiary i ich niepewność. Propagacja błędu pomiarowego. Ekstrakcja cech. Algorytmy percepcyjne. Algorytmy wizyjne. Modele reprezentacji danych sensorycznych. Modele przestrzeni roboczej (modele rastrowe, geometryczne, topologiczne).
Kinematyka robotów mobilnych. Modele i ograniczenia kinematyki. Sterowność robota. Przestrzeń robocza i kontrola ruchu. Kinematyka członów wykonawczych (kamera, dalmierze laserowe, manipulatory, etc.).
Lokalizacja robota mobilnego. Klasyfikacja metod. Podstawowe wyzwania w lokalizacji robotów mobilnych. Odometria. Lokalizacja w oparciu o mapę otoczenia. Metody lokalizacji probabilistycznej. Zastosowanie filtru Kalmana w lokalizacji. Systemy lokalizacji stosujące znaczniki otoczenia i globalne systemy pozycjonujące. Autonomiczne budowanie mapy otoczenia.
Nawigacja. Planowanie trajektorii. Klasyfikacja metod planowania ruchu. Przegląd podstawowych technik planowania ruchu (grafy widoczności, dekompozycja przestrzeni roboczej, metody probabilistyczne, metody sztucznego potencjału etc.). Unikanie przeszkód nieruchomych i ruchomych. Optymalizacja ruchu robota.
Sieci robotów mobilnych. Modele sieci robotów mobilnych. Systemy scentralizowane oraz wieloagentowe. Metody planowania ruchu wielu robotów. Koordynacja działań. Utrzymywanie spójności sieci, algorytmy randez-vous i optymalnego rozmieszczania robotów.

Metody kształcenia

Wykład: wykład konwencjonalny/tradycyjny.

Laboratorium: ćwiczenia laboratoryjne.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

Wykład - warunkiem zaliczenia jest uzyskanie pozytywnej oceny z egzaminu przeprowadzonego w formie zaproponowanej przez prowadzącego;
Laboratorium - warunkiem zaliczenia jest uzyskanie pozytywnych ocen ze wszystkich ćwiczeń laboratoryjnych, przewidzianych do realizacji w ramach programu laboratorium;
<!--[if !supportLineBreakNewLine]-->Składowe oceny końcowej = wykład: 50% + laboratorium: 50%

Literatura podstawowa

  1. Kozłowski K., Dutkiewicz P., Wróblewski W.: Modelowanie i sterowanie robotów, PWN, Warszawa, 2012.
  2. Dulęba I.: Metody i algorytmy planowania ruchu robotów mobilnych i manipulacyjnych, EXIT, Warszawa, 2001
  3. M. J. Giergiel, Z. Hendzel, W. Żyliński: Modelowanie i sterowanie mobilnych robotów kołowych. Wydawnictwo Naukowe PWN, Warszawa 2002.
  4. K. Tchoń, A. Mazur, I. Hossa, R. Dulęba: Manipulatory i roboty mobilne. Wydawnictwo PLJ, Warszawa 2000.
  5. T. Zielińska: Maszyny Kroczące. Podstawy, projektowanie, sterowanie i wzorce biologiczne. Wydawnictwo Naukowe PWN, Warszawa 2003.

Literatura uzupełniająca

  1. Corke P., Robot Vision Control, Springer Business Media, 2017
  2. Siegwart R., Nourbakhsh I.R.: Introduction to Autonomous Mobile Robots. MIT Press, 2010
  3. Murphy R.: Introduction to AI Robotics, MIT Press, 2000.

Uwagi


Zmodyfikowane przez dr hab. inż. Maciej Patan, prof. UZ (ostatnia modyfikacja: 31-03-2018 18:43)