SylabUZ

Wygeneruj PDF dla tej strony

Applied statistical physics - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Applied statistical physics
Kod przedmiotu 13.2-WF-FizD-ASP-S18
Wydział Wydział Fizyki i Astronomii
Kierunek Fizyka
Profil ogólnoakademicki
Rodzaj studiów drugiego stopnia z tyt. magistra
Semestr rozpoczęcia semestr zimowy 2019/2020
Informacje o przedmiocie
Semestr 1
Liczba punktów ECTS do zdobycia 5
Występuje w specjalnościach Fizyka komputerowa
Typ przedmiotu obowiązkowy
Język nauczania angielski
Sylabus opracował
  • prof. dr hab. Andrzej Drzewiński
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 30 2 - - Zaliczenie na ocenę
Ćwiczenia 30 2 - - Zaliczenie na ocenę

Cel przedmiotu

Familiarize students with the development of concepts and methods related to the thermodynamics and statistical physics. Presentation of their applications to the description of equilibrium states and non-equilibrium states in physics, biology or sociology.

Wymagania wstępne

Student should attend the courses "Fundamentals of Physics 1 and 2" (the first-cycle studies in physics).

Zakres tematyczny

LECTURE:
- Introduction: microstates and macrostates, entropy and information, non-equilibrium and equilibrium systems, the principle of maximum entropy, entropic forces, intensive and extensive quantities, the ergodic hypothesis, non-ergodic systems in nature
- Cellular automata: various cell neighborhoods, evolution simulations, Schelling’s urban segregation model
- Kinetic theory of gases: reversible and irreversible processes, particle collisions and the state of equilibrium, Maxwell-Boltzmann distribution, an average energy per particle and temperature, the theorem of equipartition of energy
- Phenomenological thermodynamics: state functions, state equations, the laws of thermodynamics, the thermodynamic description of phase transitions, the role of the fluctuation and sky blue
- Classical statistical mechanics: the ergodic hypothesis, the microcanonical ensemble, the equation of state for an ideal gas and for real gas, the thermal bath and canonical ensemble, the equivalence of thermodynamic ensembles, elements of phase transitions and critical phenomena, the critical opalescence, critical exponents and universality, the Ising model
- Stochastic processes: Markov chains, equilibrium conditions, the Master equation, the diffusion equation

CLASS:
Probability: discrete and continuous probability distributions, the binomial distribution, the normal distribution, the Poisson distribution, the Central Limit Theorem, some applications in physics and everyday life
Cellular automata: between chaos and order (playing in “Life”), a Mexican wave, a falling sand simulation
Kinetic theory of gases: Boltzmann's H-theorem, the root-mean-square speed and temperature/pressure, the mean free path
Phenomenological thermodynamics: work and energy, thermodynamic processes, the Carnot cycle and heat pump, the Otto cycle, thermodynamics of elastic bodies
Classical statistical mechanics: the Gibbs paradox, thermodynamic potentials, a partition function and thermodynamical functions, paramagnetism and the Curie's law, the Ising model of human behavior
Stochastic processes: a random walk, the Master equation and Brownian motion, a particle in a gravitational field and the barometric equation

 

Metody kształcenia

Classes are in the form of lectures when the student is encouraged to ask questions. On the exercises, students analyze and solve problems with a teacher.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

LECTURE:
The final test is conducted in writing. Student receives four issues to consider requiring the knowledge of the issues and ability to combine different phenomena. For each task, one can get from 0 to 5 points. Received a positive rating requires at least 8 points (a sufficient for 8-10.5 points, a plus sufficient for 11-13.5 points, a good 14-16, a plus good 16.5-18.5 points, a very good 19-20 points).
CLASS:
The final grade will be affected by the following factors:
- activity at classes (40%)
- the result of the final test (60%) that will be based on problems similar, but not identical, to the problems studied during the classes

The classes must be completed prior to the final test.
The lecture grade will comprise 60% of the final grade while the class grade will comprise 40% of the final grade.

Literatura podstawowa

[1] R. Feynman „Wykłady z mechaniki statystycznej”, PWN Warszawa 1980
[2] K. Huang, „Podstawy Fizyki Statystycznej”, PWN, Warszawa, 2006
[3] N. van Kampen „Procesy stochastyczne w fizyce i chemii”, PWN Warszawa 1990.
[4] L. Peliti, „Statistical Mechanics in a Nutshell”, Princeton University Press, 2011

Literatura uzupełniająca

[1] J.J. Binney, N.J. Dowrick, A.J. Fisher, M.E.J. Newman, ”Zjawiska krytyczne. Wstęp do grupy renormalizacji”, PWN, Warszawa 1998
[2] R K Pathria , P. D. Beale, „Statistical Mechanics”, Elsevier, Amsterdam, 2011
[3] B. Poirier, „A conceptual guide to thermodynamics”, John Wiley & Sons Ltd, UK, 2014
[4] F. Reif, „Fundamentals of Statistical and Thermal Physics”, McGraw-Hill, New York, 1965
[5] J. P. Sethna, “Entropy, Order Parameters, and Complexity”, Oxford, 2006

Uwagi


Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 13-02-2020 17:30)