SylabUZ

Wygeneruj PDF dla tej strony

Mathematical analysis I - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Mathematical analysis I
Kod przedmiotu 11.1-WF-FizP-MA-I- 17
Wydział Wydział Fizyki i Astronomii
Kierunek Fizyka
Profil ogólnoakademicki
Rodzaj studiów pierwszego stopnia z tyt. licencjata
Semestr rozpoczęcia semestr zimowy 2020/2021
Informacje o przedmiocie
Semestr 1
Liczba punktów ECTS do zdobycia 9
Typ przedmiotu obowiązkowy
Język nauczania angielski
Sylabus opracował
  • prof. dr hab. Andrzej Maciejewski
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 60 4 - - Egzamin
Ćwiczenia 60 4 - - Zaliczenie na ocenę

Cel przedmiotu

Familiarize students with the basic concepts, theorems and methods used in the differential and integral calculus and their application in dealing with selected physical problems.

Wymagania wstępne

Knowledge of mathematics at the secondary school level.

Zakres tematyczny

Lecture

I. Functions of one variable.

  1. Concept of function. Elementary functions: polynomials, rational functions, trigonometric functions, exponents and logarithms, and their properties. The composite and the inverse function.

  2. Inverse trigonometric functions. Elementary transformations of function graphs.

II. The limit of number sequences and functions.

  1. The definition of a number sequence. Monotonicity and boundedness of sequences and functions.

  2. Convergence of sequences. Theorems on limits of sequences. The so called sandwich rule in convergence checking.

  3. Limits and continuity of functions. Properties of continuous functions.

III. Series of numbers

  1. The concept of the sum of infinite series. The criteria for convergence of the series.

IV. Differential calculus of functions of one variable

  1. The definition of a derivative, geometric and physical interpretation, the basic rules of differential calculus.

  2. Differential of function. Differentiability of functions.

  3. The mean value theorems and their applications.

  4. De L'Hospital rule and its application in the limits of functions.

  5. Taylor and Maclaurin formula.

  6. The monotonicity of function. Local and global extremes.

  7. Convex and concave functions. Inflection points of the graph.

  8. Examination of a function.

  9. Physical applications of differential calculus.

V. Integral calculus of functions of one variable

  1. Antiderivative. The property of indefinite integrals. The rules of integration.

  2. Methods for calculating indefinite integrals - integration by parts, integration by substitution, integration of rational functions, integration of trigonometric and irrational function.

  3. Definite integral and its properties.

  4. The applications of integral calculus in geometry and physics.

  5. Improper integrals.

VI. Differential equations.

  1. Differential equations with separated variables.

  2. Homogeneous equations. Inhomogeneous equation.

  3. Linear equations of the first and the second order. Bernoulli's equations.

  4. Applications of differential equations.

VII. Vector function of one variable.

  1. The definition of vector function of one variable.

  2. Calculating the derivatives of vector functions (material should be accomplished by the student her or him-self on the basis specified by the lecturer)

Exercises

I. Functions of one variable

  1. Determining the domain and the range of the function. Checking the properties of the function. Determining the composite and the inverse functions.

  2. Constructing and transforming graphs of functions.

II. The limit of number sequences and functions.

  1. Testing properties of sequences.

  2. Calculation of limits of sequences and functions.

  3. Checking the properties of continuous functions.

III. Series of numbers

  1. Checking the necessary condition of convergence of the series. Studying the convergence of the series.

IV. Differential calculus of functions of one variable

  1. Calculating the derivative.

  2. The use of de L'Hospital rule to calculate limits of functions.

  3. Development of functions in Taylor and Maclaurin series.

  4. Studying the monotonicity of functions. Determination of local and global extremes of functions.

  5. Determination of inflection points and concavity and convexity intervals.

  6. Examination of a function.

  7. The usefulness of calculus in dealing with physical problems.

V. Integral calculus of functions of one variable

  1. Integration of functions by the methods from the lecture.

  2. Calculation of definite integrals and its applications in geometry and physics

  3. Studying convergence of improper integrals.

VI. Differential equations

  1. Solving differential equations with separated variables.

  2. Solving homogeneous and inhomogeneous equations.

  3. Solving linear equations of I and II-order and the Bernoulli equations.

  4. The application of differential equations to physical problems.

Metody kształcenia

Conventional lectures, exercises auditorium, group work, problem-classical method, the discussion, the use of multimedia.

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

Class:

The grade consists of two criteria: the scores in four tests organized during classes (80%) and degree of active participation in classes and suitable preparation (20%). A student is required to obtain at least 50% of maximal score. The student with the lowest passing grade of 10% of maximal score may write a correction test before the exam class.

Lecture:

The final exam is composed of written part and conversation; to be admitted to the second part a student must receive at least 30% of maximal score of the first part. To be admitted to the exam a student must receive a credit for the class.

The course credit consists of the class grade (50%) and the exam grade (50%). The course credit is attained by positive passing both class and exam.

Literatura podstawowa

[1] R. Rudnicki, Wykłady z analizy matematycznej, PWN, Warszawa 2006.

[2] Sołtysiak, Analiza matematyczna, Część I, (Wykłady z matematyki dla studentów fizyki), Wydawnictwo Naukowe UAM, Poznań 1995.

[3] M. Gewert, Z. Skoczylas, Analiza matematyczna 1, Definicje, twierdzenia, wzory, Oficyna Wydawnicza GIS, Wrocław 2005.

[4] M. Gewert, Z. Skoczylas, Analiza matematyczna 1, Przykłady i zadania, Oficyna GIS, Wrocław 2005.

[5] Ron Larson, Bruce H. Edwards, Calculus, 9th Edition, Cengage Learning 2010.

[6] W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, cz. 1 i 2, PWN, Warszawa 1992.


 

Literatura uzupełniająca

[1] J. Banaś, S. Wędrychowicz, Zbiór zadań z analizy matematycznej, WNT, Warszawa 1994.

[2] G. M. Fichtenholz, Rachunek różniczkowy i całkowy, tom I i II, PWN, Warszawa 1995.

[3] F. Leja: Rachunek różniczkowy i całkowy, PWN, Warszawa 1972.

[4] R. Adams, C. Essex, Calculus - A Complete Course 7th ed - (Pearson Canada, 2010) BBS.

[5] G. I. Zaporożec, Metody rozwiązywania zadań z analizy matematycznej, WNT, Warszawa 1976.

[6] Earl W. Swokowski, Calculus with Analytic Geometry, Alternate Edition –PWS Publisher 1983.

Uwagi


Zmodyfikowane przez dr hab. Piotr Lubiński, prof. UZ (ostatnia modyfikacja: 03-06-2020 15:17)