SylabUZ

Wygeneruj PDF dla tej strony

Interfejsy energoelektroniczne - opis przedmiotu

Informacje ogólne
Nazwa przedmiotu Interfejsy energoelektroniczne
Kod przedmiotu 06.0-WE-EP-InterfEnergoel-EiE
Wydział Wydział Informatyki, Elektrotechniki i Automatyki
Kierunek Elektrotechnika
Profil ogólnoakademicki
Rodzaj studiów pierwszego stopnia z tyt. inżyniera
Semestr rozpoczęcia semestr zimowy 2021/2022
Informacje o przedmiocie
Semestr 6
Liczba punktów ECTS do zdobycia 4
Typ przedmiotu obowiązkowy
Język nauczania polski
Sylabus opracował
  • dr hab. inż. Paweł Szcześniak, prof. UZ
Formy zajęć
Forma zajęć Liczba godzin w semestrze (stacjonarne) Liczba godzin w tygodniu (stacjonarne) Liczba godzin w semestrze (niestacjonarne) Liczba godzin w tygodniu (niestacjonarne) Forma zaliczenia
Wykład 30 2 18 1,2 Zaliczenie na ocenę
Laboratorium 15 1 9 0,6 Zaliczenie na ocenę

Cel przedmiotu

Zapoznanie studentów z podstawowymi układami i właściwościami przekształtników energoelektronicznych pracujących w charakterze interfejsów OZE i magazynów energii. Ukształtowanie umiejętności doboru typu topologii oraz parametrów interfejsów energoelektronicznych w rozproszonych elektroenergetycznych systemach dystrybucyjnych. Uświadomienie znaczenia sposobów i jakości przekształcania energii elektrycznej.

Wymagania wstępne

Energoelektronika, Rozproszone źródła energii i transport elektryczny

Zakres tematyczny

Wykład: Wprowadzenie. Charakterystyka rozproszonych źródeł energii. Charakterystyka rozproszonych elektroenergetycznych systemów dystrybucyjnych z OZE. Sprzęganie źródeł energii elektrycznej OZE z systemem dystrybucyjnym. Układy współpracujące z siecią i układy autonomiczne. Przekształtniki energoelektroniczne z algorytmami MPPT do sprzęgania OZE prądu stałego oraz prądu przemiennego. Interfejsy energoelektroniczne ze sprzężeniem typu DC Bus oraz typu HFAC. Interfejsy energoelektroniczne z dwukierunkowym przepływem energii stosowane w magazynach energii. Trendy rozwojowe interfejsów energoelektronicznych OZE i magazynów energii.

Laboratorium: Badania właściwości funkcjonalnych i energetycznych regulatorów PWM do systemów PV. Badania właściwości funkcjonalnych i energetycznych regulatorów MPPT do systemów PV. Badania właściwości dwukierunkowego przekształtnika AC/DC. Badanie właściwości interfejsu energoelektronicznego w układzie typu Grid Tied współpracującego z siecią elektroenergetyczną. Badania właściwości interfejsu energoelektronicznego w układzie typu Off Grid do systemów autonomicznych. Badanie właściwości interfejsu w układzie hybrydowym do systemów z zasobnikiem energii i systemem PV.

Metody kształcenia

Wykład: wykład konwencjonalny (multimedialny), wykład problemowy

Laboratorium: ćwiczenia laboratoryjne, praca w grupach

Efekty uczenia się i metody weryfikacji osiągania efektów uczenia się

Opis efektu Symbole efektów Metody weryfikacji Forma zajęć

Warunki zaliczenia

Wykład

Ocena jest ustalana na podstawie wyników kolokwiów.

Laboratorium

Ocena końcowa jest średnią arytmetyczną z ocen cząstkowych wystawianych za wykonane przez studentów sprawozdanie z każdych zajęć laboratoryjnych.

Ocena końcowa

Ocena końcowa przedmiotu jest wyznaczana na podstawie ocen ze wszystkich form przedmiotu z wagą: wykład 50%, laboratorium 50%.

Literatura podstawowa

1. Bogdan Szymański, Instalacje fotowoltaiczne, Edycja 2020, wydanie IX,Globenergia, 2020.
2. Alfred Rufer, Energy Storage Systems and Components, CRC Press, Taylor & Francis Group, 2018.
3. Duer Stanisław, Elektryczne systemy zasilania z odnawialnymi źródłami energii, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin 2018.
4. Siegfried Heier, Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, John Wiley & Sons, Ltd., 2014.
5. Bimal K. Bose, Power Electronics in Renewable Energy Systems and Smart Grid: Technology and Applications, Wiley-IEEE Press, 2019.
5. Ewa Klugmann-Radziemska, Odnawialne źródła energii Przykłady obliczeniowe, Wydawnictwo Politechniki Gdańskiej, 2015.
6. Hee-Je Kim, Solar Power and Energy Storage Systems, Jenny Stanford Publishing 2019.
7. Dmitri Vinnikov, Samir Kouro, Yongheng Yang, Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems, MDPI Basel, Switzerland, 2020.

Literatura uzupełniająca

1. Kramer W., Chakraborty S., Kroposki B., Thomas H.: Advanced power electronics interfaces for distributed energy systems. Part I, Systems and topologies. NREL National Renewable Energy Laboratory, NREL/TP-581-42672, 2003.
2. Chakraborty S., Kroposki B., Kramer W.: Advanced power electronics interfaces for distributed energy systems. Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter. NREL/TP-550-44313, 2008. 
3. Grażyna Jastrzębska, Odnawialne źródła energii i pojazdy proekologiczne. WNT, Warszawa, 2011.

Uwagi


Zmodyfikowane przez dr hab. inż. Paweł Szcześniak, prof. UZ (ostatnia modyfikacja: 20-04-2021 23:45)