SylabUZ
Nazwa przedmiotu | Signal processing using digital signal processors |
Kod przedmiotu | 06.5-WE-ELEKTP-SPUDSP-Er |
Wydział | Wydział Nauk Inżynieryjno-Technicznych |
Kierunek | Elektrotechnika |
Profil | ogólnoakademicki |
Rodzaj studiów | Program Erasmus pierwszego stopnia |
Semestr rozpoczęcia | semestr zimowy 2021/2022 |
Semestr | 5 |
Liczba punktów ECTS do zdobycia | 5 |
Typ przedmiotu | obieralny |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 30 | 2 | - | - | Egzamin |
Laboratorium | 30 | 2 | - | - | Zaliczenie na ocenę |
- to familiarize students with basic concepts, methods, description and analysis of discrete systems;
- to familiarize with methods of description and analysis of multirate digital circuits;
- to mastery by students ability to apply theory of digital filters;
- introduction to theory and mastery of the basic methods of discrete simulation of digital circuits;
- to give basic skills of observation of the behavior and take of characteristics of electric circuits;
- to give basic skills in the design and realization of digital circuits using digital signal processors;
Circuit Theory, Microprocessor Systems, Computer Science
Analog and digital signal processing. Properties of signals. Analog (continuous-time) signals, discrete time signals. Signal parameters.
Analog signal processing. Analog circuits, linear two-port network. Continuous-time filters. Filter parameters. Introduction to analog filter design.
Signal discretization. Uniform and non-uniform signal sampling. Analog-to-digital (A/D) and digital-to-analog (D/A) signal conversion. A/D and D/A signal converters. Examples of multimedia and measurements data signal conversions.
Linear time-invariant (LTI) circuit. Discrete Fourier transform (DFT). Leakage effects. Widows. Properties of DFT. Fast Fourier transform (FFT). Z transform. Properties of Z transform.
Multirate digital signal processing. Decimation and interpolation. Implementation of multirate digital signal processing algorithms. Applications of multirate signal processing: noise shaping technique in delta-sigma modulator (DSM) used in A/D and D/A converters.
Digital modulations: pulse width modulation (PWM), pulse density modulation PDM, pulse code modulation PCM, differential pulse code modulation.
Digital filters: linear and nonlinear filters, multirate filters, filter banks, multidimensional filters. Properties of digital filters: finite impulse response filter (FIR), infinite response filter (IIR). Design of digital filters.
Round off effects in digital filters. Implementation of digital filters using digital signal processors.
Switched Capacitor (SC) filters.
Signal processing of random processes. Adaptive systems.
Subband coding. Design of filter banks. Wavelet transform.
Lecture, laboratory exercises.
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture – in order to get a credit it is necessary to pass all of the required tests (oral or written).
Laboratory – the main condition to get a pass are sufficient marks for all exercises and tests conducted during the semester.
Calculation of the final grade: lecture 60% + laboratory 40% .
Proakis J. G., Manolakis D. M., Digital Signal processing, Principles, Algorithms, and Applications, Third Edition, Prentice Hall Inc., Engelwood Cliffs, New Jersey 1996.
Lyons R., Understanding digital signal processing, Prentice Hall, 2004.
Oppenheim A. V., Schafer R. W., Discrete-time signal processing, Prentice Hall, New Jersey, 1999.
Stallings W., Computer Organization and Architecture, Pearson, 2015.
Vaidyanathan P. P., Multirate Systems and Filter Banks, Prentice Hall Inc., Engelwood Cliffs, New Jersey 1992.
Wanhammar L., Digital Filters, Linkoping University, 1996.
K. Sozanski, Digital Signal Processing in Power Electronics Control Circuits, second edition, Springer-Verlag London, 2017.
Embree P. M., Kimble B., C Language Algorithms for Digital Signal Processing, Prentice Hall, 1991.
Dahnoun N., Multicore DSP: From Algorithms to Real-time Implementation on the TMS320C66x SoC, Wiley, 2018
Chassaing R., Digital Signal Processing with C and the TMS320C30, John Wiley & Sons, 1992.
McFarland G., Microprocessor Design (Professional Engineering), McGraw-Hill Professional, 2006.
Zmodyfikowane przez dr hab. inż. Paweł Szcześniak, prof. UZ (ostatnia modyfikacja: 08-07-2021 21:49)