SylabUZ
Nazwa przedmiotu | Principles of automatics |
Kod przedmiotu | 06.0--ELEKTP-PodAutom-Er |
Wydział | Wydział Nauk Inżynieryjno-Technicznych |
Kierunek | Elektrotechnika |
Profil | ogólnoakademicki |
Rodzaj studiów | Program Erasmus pierwszego stopnia |
Semestr rozpoczęcia | semestr zimowy 2021/2022 |
Semestr | 3 |
Liczba punktów ECTS do zdobycia | 5 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Laboratorium | 30 | 2 | - | - | Zaliczenie na ocenę |
Wykład | 30 | 2 | - | - | Zaliczenie na ocenę |
Basic knowledge of analysis and synthesis of continuous and discrete control systems in the time and frequency domains, engineering skills in designing linear control systems, choice of controller type, tuning a control loop, analysis and synthesis of nonlinear control systems.
Introduction. Control loop basics. Open-loop control, closed-loop control, disturbance compensation. Control tasks, classification of control systems.
Linear continuous control systems. Characterization of systems dynamics in the time and frequency domains. State space representation of system dynamics. Equilibriumm points, state trajectories, phase portraits. Basic dynamic elements. Interconnection of subsystems.
Analysis of linear continuous control systems. Stability of linear continuous systems. Stability definitions. Stability criteria. Control specifications. Measures of control system performance. Methods of improving system performance. PID controllers. Choice of controller type. Tuning PID control systems. Controllability and observability. State observers. State feedback control systems.
Discrete-time control systems. Computer control systems. Digital control. Signal sampling and quantization. Discrete-time models of continuous-time systems. Characterization of discrete-time systems dynamics in the time and frequency domains. State space representation of discrete-time system. Stability of discrete-time systems. Discrete PID controllers.
Nonlinear control systems. Basic nonlinear elements. Linearization.. Stability of nonlinear continuous control systems. First Lyapunov method. Second Lyapunov method. Nonlinear controllers. On-off control.
Computer-aided analysis and synthesis of control systems. Control System Toolbox. Simulink. Fuzzy Logic Toolbox.
Lectures, laboratory exercises
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture – the main condition to get a pass are sufficient marks in written tests.
Laboratory – the passing condition is to obtain positive marks from all laboratory exercises
to be planned during the semester.
Calculation of the final Grade: lecture 50% + laboratory 50%
1. Nise N. S., Control Systems Engineering, John Wiley & Sons, Holboken, 2003
2. Ogata K., Modern Control Engineering, Prentice Hall, Upper Saddle River, 2002.
3. Sontag E. D. Mathematical Control Theory, Springer, Berlin, 1998
1. Control System Toolbox™ User's Guide, The MathWorks, Inc., 2017.
2. Simulink® User's Guide, The MathWorks, Inc., 2017.
Zmodyfikowane przez dr hab. inż. Andrzej Janczak, prof. UZ (ostatnia modyfikacja: 12-07-2021 11:31)