SylabUZ
Nazwa przedmiotu | Computational logic |
Kod przedmiotu | 11.3-WE-INFP-CompLogic |
Wydział | Wydział Nauk Inżynieryjno-Technicznych |
Kierunek | Informatyka |
Profil | ogólnoakademicki |
Rodzaj studiów | Program Erasmus pierwszego stopnia |
Semestr rozpoczęcia | semestr zimowy 2021/2022 |
Semestr | 1 |
Liczba punktów ECTS do zdobycia | 4 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 15 | 1 | - | - | Zaliczenie na ocenę |
Laboratorium | 30 | 2 | - | - | Zaliczenie na ocenę |
Introduce students to the basics of Boolean algebra and sentence calculus.
To familiarize students with methods of proving tautology.
Familiarizing students with the use of logic and set theory in computer science.
no requirements
Propositional calculus. Syntax and semantics. The concept of tautology. Methods of proving tautology. Rights of the propositional calculus.
Sets and set elements. Defining subsets of the set. Equality of sets. Operations on sets. The laws of sets theory and the ways of proving them.
Boolean algebra. Logical functions. Minimize logical functions. Logical Function Representation Methods (BDD). Study of the satisfying of logical functions.
Logic and set theory in computer science. Logical relations.
Elements of symbolic logic and sequent calculus.
Lecture: Conventional lecture.
Laboratory: Practical exercises performed on the board and using computer software.
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture - the main condition to get a pass are sufficient marks in written tests
Laboratory – the main condition to get a pass is to obtain positive marks from the written tests
1) Mordechai Ben-Ari. Mathematical Logic for Computer Science, 2012
2) Jean H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving,1986,2015
3) Alfred Tarski. Introduction to Logic: and to the Methodology of Deductive Sciences
4) Richard E. Hodel. An Introduction to Mathematical Logic, 1995
5) Stephen Cole Kleene. Mathematical Logic, 1967
Zmodyfikowane przez dr inż. Jacek Tkacz (ostatnia modyfikacja: 14-07-2021 09:18)