SylabUZ
Nazwa przedmiotu | Control theory |
Kod przedmiotu | 06.0-WE-AutD-ConTheory-Er |
Wydział | Wydział Nauk Inżynieryjno-Technicznych |
Kierunek | Automatyka i robotyka / Komputerowe Systemy Automatyki |
Profil | ogólnoakademicki |
Rodzaj studiów | Program Erasmus drugiego stopnia |
Semestr rozpoczęcia | semestr zimowy 2021/2022 |
Semestr | 1 |
Liczba punktów ECTS do zdobycia | 5 |
Typ przedmiotu | obowiązkowy |
Język nauczania | angielski |
Sylabus opracował |
|
Forma zajęć | Liczba godzin w semestrze (stacjonarne) | Liczba godzin w tygodniu (stacjonarne) | Liczba godzin w semestrze (niestacjonarne) | Liczba godzin w tygodniu (niestacjonarne) | Forma zaliczenia |
Wykład | 30 | 2 | - | - | Egzamin |
Laboratorium | 30 | 2 | - | - | Zaliczenie na ocenę |
1. To recognize the basic description methods of nonlinear control systems.
2. To familiarize students with analysis and synthesis methods for continuous-time control systems based on Lapunov's theory.
3. To familiarize students with the methods of formulating and solving optimal control problems.
Mathematical analysis, Linear algebra, Control Engineering
Introduction to nonlinear systems. The most common nonlinear systems. The state space representation. An equilibrium point. Typical behaviour of nonlinear systems. Limit cycles.
Analysis of dynamic properties of nonlinear systems with the phase plane method. The second order nonlinear systems; graphical representation with phase portraits. Singular points. Graphical and numerical methods for generating of a phase portrait. Stability analysis of nonlinear systems by using the phase plane method.
Stability analysis. Different definitions to a nonlinear system stability. Lyapunov’s linearization method. Lyapunov’s second (direct) method. Global asymptotic stability analysis. La Salle's theorem. Stability of time-varying nonlinear systems. Instability theorems. Absolute stability criterions. A sector nonlinearity. Popov and circle criterion. Controller synthesis based on Lyapunov’s method.
The describing function method. Definitions of a limit cycle and characteristics. The existence theorem. Definition of the describing function. Describing function for systems with input saturation, output deadzone and hysteresis respectively. Using the describing function method for limit cycle analysis. Stability analysis of a limit cycle.
Feedback linearization. Mathematical basics of feedback linearization. Lie’s algebra. Input-output linearization. Linearization conditions. Controllability conditions. Algorithm for an input-state linearization. Normal forms. Diffeomorphism. Algorithm for an input-output linearization. Internal dynamics. Asymptotic properties of nonlinear minimum phase systems.
Lecture, laboratory exercises.
Opis efektu | Symbole efektów | Metody weryfikacji | Forma zajęć |
Lecture – obtaining a positive grade in written or oral exam.
Laboratory – the main condition to get a pass is scoring sufficient marks for all laboratory exercises.
1. D. Atherton, An introduction to Nonlinearity in Control systems, Ventus Publishing, 2011.
2. H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, 2002.
3. S. Skogestad, I. Postlethwaite: Multivariable feedback control. Analysis and design. John Wiley and Sons, 2nd edition, 2005.
4. P. Albertos, A. Sala : Multivariable control systems: An engineering approach, Springer, London, 2004.
5. K.J. Åström, R.M. Murray, Feedback Systems: An Introduction for Scientists and Engineers, Princeton University Press, Princeton, 2009
Zmodyfikowane przez dr hab. inż. Wojciech Paszke, prof. UZ (ostatnia modyfikacja: 30-08-2021 11:23)